|
|
|
#include "precomp.hpp"
|
|
|
|
#include <iomanip>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::ocl;
|
|
|
|
using namespace cvtest;
|
|
|
|
using namespace testing;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void blendLinearGold(const cv::Mat& img1, const cv::Mat& img2, const cv::Mat& weights1, const cv::Mat& weights2, cv::Mat& result_gold)
|
|
|
|
{
|
|
|
|
result_gold.create(img1.size(), img1.type());
|
|
|
|
|
|
|
|
int cn = img1.channels();
|
|
|
|
|
|
|
|
for (int y = 0; y < img1.rows; ++y)
|
|
|
|
{
|
|
|
|
const float* weights1_row = weights1.ptr<float>(y);
|
|
|
|
const float* weights2_row = weights2.ptr<float>(y);
|
|
|
|
const T* img1_row = img1.ptr<T>(y);
|
|
|
|
const T* img2_row = img2.ptr<T>(y);
|
|
|
|
T* result_gold_row = result_gold.ptr<T>(y);
|
|
|
|
|
|
|
|
for (int x = 0; x < img1.cols * cn; ++x)
|
|
|
|
{
|
|
|
|
float w1 = weights1_row[x / cn];
|
|
|
|
float w2 = weights2_row[x / cn];
|
|
|
|
result_gold_row[x] = static_cast<T>((img1_row[x] * w1 + img2_row[x] * w2) / (w1 + w2 + 1e-5f));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(Blend, cv::Size, MatType/*, UseRoi*/)
|
|
|
|
{
|
|
|
|
std::vector<cv::ocl::Info> oclinfo;
|
|
|
|
cv::Size size;
|
|
|
|
int type;
|
|
|
|
bool useRoi;
|
|
|
|
|
|
|
|
virtual void SetUp()
|
|
|
|
{
|
|
|
|
//devInfo = GET_PARAM(0);
|
|
|
|
size = GET_PARAM(0);
|
|
|
|
type = GET_PARAM(1);
|
|
|
|
/*useRoi = GET_PARAM(3);*/
|
|
|
|
|
|
|
|
int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
|
|
|
|
CV_Assert(devnums > 0);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_P(Blend, Accuracy)
|
|
|
|
{
|
|
|
|
int depth = CV_MAT_DEPTH(type);
|
|
|
|
|
|
|
|
cv::Mat img1 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0);
|
|
|
|
cv::Mat img2 = randomMat(size, type, 0.0, depth == CV_8U ? 255.0 : 1.0);
|
|
|
|
cv::Mat weights1 = randomMat(size, CV_32F, 0, 1);
|
|
|
|
cv::Mat weights2 = randomMat(size, CV_32F, 0, 1);
|
|
|
|
|
|
|
|
cv::ocl::oclMat gimg1(size, type), gimg2(size, type), gweights1(size, CV_32F), gweights2(size, CV_32F);
|
|
|
|
cv::ocl::oclMat dst(size, type);
|
|
|
|
gimg1.upload(img1);
|
|
|
|
gimg2.upload(img2);
|
|
|
|
gweights1.upload(weights1);
|
|
|
|
gweights2.upload(weights2);
|
|
|
|
cv::ocl::blendLinear(gimg1, gimg2, gweights1, gweights2, dst);
|
|
|
|
cv::Mat result;
|
|
|
|
cv::Mat result_gold;
|
|
|
|
dst.download(result);
|
|
|
|
if (depth == CV_8U)
|
|
|
|
blendLinearGold<uchar>(img1, img2, weights1, weights2, result_gold);
|
|
|
|
else
|
|
|
|
blendLinearGold<float>(img1, img2, weights1, weights2, result_gold);
|
|
|
|
|
|
|
|
EXPECT_MAT_NEAR(result_gold, result, CV_MAT_DEPTH(type) == CV_8U ? 1 : 1e-5f, NULL)
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, Blend, Combine(
|
|
|
|
DIFFERENT_SIZES,
|
|
|
|
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1), MatType(CV_32FC4))
|
|
|
|
));
|