In this tutorial we will learn how to use [AKAZE]_ local features to detect and match keypoints on two images.
We will find keypoints on a pair of images with given homography matrix,
match them and count the number of inliers (i. e. matches that fit in the given homography).
You can find expanded version of this example here: https://github.com/pablofdezalc/test_kaze_akaze_opencv
..[AKAZE] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
Data
------------------
We are going to use images 1 and 3 from *Graffity* sequence of Oxford dataset.
..image:: images/graf.png
:height:200pt
:width:320pt
:alt:Graffity
:align:center
Homography is given by a 3 by 3 matrix:
..code-block:: none
7.6285898e-01 -2.9922929e-01 2.2567123e+02
3.3443473e-01 1.0143901e+00 -7.6999973e+01
3.4663091e-04 -1.4364524e-05 1.0000000e+00
You can find the images (*graf1.png*, *graf3.png*) and homography (*H1to3p.xml*) in *opencv/samples/cpp*.