mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
134 lines
3.8 KiB
134 lines
3.8 KiB
10 years ago
|
AKAZE local features matching {#tutorial_akaze_matching}
|
||
|
=============================
|
||
|
|
||
|
Introduction
|
||
|
------------
|
||
|
|
||
|
In this tutorial we will learn how to use [AKAZE]_ local features to detect and match keypoints on
|
||
|
two images.
|
||
|
|
||
|
We will find keypoints on a pair of images with given homography matrix, match them and count the
|
||
|
number of inliers (i. e. matches that fit in the given homography).
|
||
|
|
||
|
You can find expanded version of this example here:
|
||
|
<https://github.com/pablofdezalc/test_kaze_akaze_opencv>
|
||
|
|
||
|
Data
|
||
|
----
|
||
|
|
||
|
We are going to use images 1 and 3 from *Graffity* sequence of Oxford dataset.
|
||
|
|
||
|
![image](images/graf.png)
|
||
|
|
||
|
Homography is given by a 3 by 3 matrix:
|
||
|
@code{.none}
|
||
|
7.6285898e-01 -2.9922929e-01 2.2567123e+02
|
||
|
3.3443473e-01 1.0143901e+00 -7.6999973e+01
|
||
|
3.4663091e-04 -1.4364524e-05 1.0000000e+00
|
||
|
@endcode
|
||
|
You can find the images (*graf1.png*, *graf3.png*) and homography (*H1to3p.xml*) in
|
||
|
*opencv/samples/cpp*.
|
||
|
|
||
|
### Source Code
|
||
|
|
||
|
@includelineno cpp/tutorial_code/features2D/AKAZE_match.cpp
|
||
|
|
||
|
### Explanation
|
||
|
|
||
|
1. **Load images and homography**
|
||
|
@code{.cpp}
|
||
|
Mat img1 = imread("graf1.png", IMREAD_GRAYSCALE);
|
||
|
Mat img2 = imread("graf3.png", IMREAD_GRAYSCALE);
|
||
|
|
||
|
Mat homography;
|
||
|
FileStorage fs("H1to3p.xml", FileStorage::READ);
|
||
|
fs.getFirstTopLevelNode() >> homography;
|
||
|
@endcode
|
||
|
We are loading grayscale images here. Homography is stored in the xml created with FileStorage.
|
||
|
|
||
|
1. **Detect keypoints and compute descriptors using AKAZE**
|
||
|
@code{.cpp}
|
||
|
vector<KeyPoint> kpts1, kpts2;
|
||
|
Mat desc1, desc2;
|
||
|
|
||
|
AKAZE akaze;
|
||
|
akaze(img1, noArray(), kpts1, desc1);
|
||
|
akaze(img2, noArray(), kpts2, desc2);
|
||
|
@endcode
|
||
|
We create AKAZE object and use it's *operator()* functionality. Since we don't need the *mask*
|
||
|
parameter, *noArray()* is used.
|
||
|
|
||
|
1. **Use brute-force matcher to find 2-nn matches**
|
||
|
@code{.cpp}
|
||
|
BFMatcher matcher(NORM_HAMMING);
|
||
|
vector< vector<DMatch> > nn_matches;
|
||
|
matcher.knnMatch(desc1, desc2, nn_matches, 2);
|
||
|
@endcode
|
||
|
We use Hamming distance, because AKAZE uses binary descriptor by default.
|
||
|
|
||
|
1. **Use 2-nn matches to find correct keypoint matches**
|
||
|
@code{.cpp}
|
||
|
for(size_t i = 0; i < nn_matches.size(); i++) {
|
||
|
DMatch first = nn_matches[i][0];
|
||
|
float dist1 = nn_matches[i][0].distance;
|
||
|
float dist2 = nn_matches[i][1].distance;
|
||
|
|
||
|
if(dist1 < nn_match_ratio * dist2) {
|
||
|
matched1.push_back(kpts1[first.queryIdx]);
|
||
|
matched2.push_back(kpts2[first.trainIdx]);
|
||
|
}
|
||
|
}
|
||
|
@endcode
|
||
|
If the closest match is *ratio* closer than the second closest one, then the match is correct.
|
||
|
|
||
|
1. **Check if our matches fit in the homography model**
|
||
|
@code{.cpp}
|
||
|
for(int i = 0; i < matched1.size(); i++) {
|
||
|
Mat col = Mat::ones(3, 1, CV_64F);
|
||
|
col.at<double>(0) = matched1[i].pt.x;
|
||
|
col.at<double>(1) = matched1[i].pt.y;
|
||
|
|
||
|
col = homography * col;
|
||
|
col /= col.at<double>(2);
|
||
|
float dist = sqrt( pow(col.at<double>(0) - matched2[i].pt.x, 2) +
|
||
|
pow(col.at<double>(1) - matched2[i].pt.y, 2));
|
||
|
|
||
|
if(dist < inlier_threshold) {
|
||
|
int new_i = inliers1.size();
|
||
|
inliers1.push_back(matched1[i]);
|
||
|
inliers2.push_back(matched2[i]);
|
||
|
good_matches.push_back(DMatch(new_i, new_i, 0));
|
||
|
}
|
||
|
}
|
||
|
@endcode
|
||
|
If the distance from first keypoint's projection to the second keypoint is less than threshold,
|
||
|
then it it fits in the homography.
|
||
|
|
||
|
We create a new set of matches for the inliers, because it is required by the drawing function.
|
||
|
|
||
|
1. **Output results**
|
||
|
@code{.cpp}
|
||
|
Mat res;
|
||
|
drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
|
||
|
imwrite("res.png", res);
|
||
|
...
|
||
|
@endcode
|
||
|
Here we save the resulting image and print some statistics.
|
||
|
|
||
|
### Results
|
||
|
|
||
|
Found matches
|
||
|
-------------
|
||
|
|
||
|
![image](images/res.png)
|
||
|
|
||
|
A-KAZE Matching Results
|
||
|
-----------------------
|
||
|
@code{.none}
|
||
|
Keypoints 1: 2943
|
||
|
Keypoints 2: 3511
|
||
|
Matches: 447
|
||
|
Inliers: 308
|
||
|
Inlier Ratio: 0.689038}
|
||
|
@endcode
|