Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

456 lines
15 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
static const uchar*
adjustRect( const uchar* src, size_t src_step, int pix_size,
Size src_size, Size win_size,
Point ip, Rect* pRect )
{
Rect rect;
if( ip.x >= 0 )
{
src += ip.x*pix_size;
rect.x = 0;
}
else
{
rect.x = -ip.x;
if( rect.x > win_size.width )
rect.x = win_size.width;
}
if( ip.x + win_size.width < src_size.width )
rect.width = win_size.width;
else
{
rect.width = src_size.width - ip.x - 1;
if( rect.width < 0 )
{
src += rect.width*pix_size;
rect.width = 0;
}
assert( rect.width <= win_size.width );
}
if( ip.y >= 0 )
{
src += ip.y * src_step;
rect.y = 0;
}
else
rect.y = -ip.y;
if( ip.y + win_size.height < src_size.height )
rect.height = win_size.height;
else
{
rect.height = src_size.height - ip.y - 1;
if( rect.height < 0 )
{
src += rect.height*src_step;
rect.height = 0;
}
}
*pRect = rect;
return src - rect.x*pix_size;
}
enum { SUBPIX_SHIFT=16 };
struct scale_fixpt
{
int operator()(float a) const { return cvRound(a*(1 << SUBPIX_SHIFT)); }
};
struct cast_8u
{
uchar operator()(int a) const { return (uchar)((a + (1 << (SUBPIX_SHIFT-1))) >> SUBPIX_SHIFT); }
};
struct cast_flt_8u
{
uchar operator()(float a) const { return (uchar)cvRound(a); }
};
template<typename _Tp>
struct nop
{
_Tp operator()(_Tp a) const { return a; }
};
template<typename _Tp, typename _DTp, typename _WTp, class ScaleOp, class CastOp>
void getRectSubPix_Cn_(const _Tp* src, size_t src_step, Size src_size,
_DTp* dst, size_t dst_step, Size win_size, Point2f center, int cn )
{
ScaleOp scale_op;
CastOp cast_op;
Point ip;
_WTp a11, a12, a21, a22, b1, b2;
float a, b;
int i, j, c;
center.x -= (win_size.width-1)*0.5f;
center.y -= (win_size.height-1)*0.5f;
ip.x = cvFloor( center.x );
ip.y = cvFloor( center.y );
a = center.x - ip.x;
b = center.y - ip.y;
a11 = scale_op((1.f-a)*(1.f-b));
a12 = scale_op(a*(1.f-b));
a21 = scale_op((1.f-a)*b);
a22 = scale_op(a*b);
b1 = scale_op(1.f - b);
b2 = scale_op(b);
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
if( 0 <= ip.x && ip.x + win_size.width < src_size.width &&
0 <= ip.y && ip.y + win_size.height < src_size.height )
{
// extracted rectangle is totally inside the image
src += ip.y * src_step + ip.x*cn;
win_size.width *= cn;
for( i = 0; i < win_size.height; i++, src += src_step, dst += dst_step )
{
for( j = 0; j <= win_size.width - 2; j += 2 )
{
_WTp s0 = src[j]*a11 + src[j+cn]*a12 + src[j+src_step]*a21 + src[j+src_step+cn]*a22;
_WTp s1 = src[j+1]*a11 + src[j+cn+1]*a12 + src[j+src_step+1]*a21 + src[j+src_step+cn+1]*a22;
dst[j] = cast_op(s0);
dst[j+1] = cast_op(s1);
}
for( j = 0; j < win_size.width; j++ )
{
_WTp s0 = src[j]*a11 + src[j+cn]*a12 + src[j+src_step]*a21 + src[j+src_step+cn]*a22;
dst[j] = cast_op(s0);
}
}
}
else
{
Rect r;
src = (const _Tp*)adjustRect( (const uchar*)src, src_step*sizeof(*src),
sizeof(*src)*cn, src_size, win_size, ip, &r);
for( i = 0; i < win_size.height; i++, dst += dst_step )
{
const _Tp *src2 = src + src_step;
_WTp s0;
if( i < r.y || i >= r.height )
src2 -= src_step;
for( c = 0; c < cn; c++ )
{
s0 = src[r.x*cn + c]*b1 + src2[r.x*cn + c]*b2;
for( j = 0; j < r.x; j++ )
dst[j*cn + c] = cast_op(s0);
s0 = src[r.width*cn + c]*b1 + src2[r.width*cn + c]*b2;
for( j = r.width; j < win_size.width; j++ )
dst[j*cn + c] = cast_op(s0);
}
for( j = r.x*cn; j < r.width*cn; j++ )
{
s0 = src[j]*a11 + src[j+cn]*a12 + src2[j]*a21 + src2[j+cn]*a22;
dst[j] = cast_op(s0);
}
if( i < r.height )
src = src2;
}
}
}
static void getRectSubPix_8u32f
( const uchar* src, size_t src_step, Size src_size,
float* dst, size_t dst_step, Size win_size, Point2f center0, int cn )
{
Point2f center = center0;
Point ip;
center.x -= (win_size.width-1)*0.5f;
center.y -= (win_size.height-1)*0.5f;
ip.x = cvFloor( center.x );
ip.y = cvFloor( center.y );
if( cn == 1 &&
0 <= ip.x && ip.x + win_size.width < src_size.width &&
0 <= ip.y && ip.y + win_size.height < src_size.height &&
win_size.width > 0 && win_size.height > 0 )
{
float a = center.x - ip.x;
float b = center.y - ip.y;
a = MAX(a,0.0001f);
float a12 = a*(1.f-b);
float a22 = a*b;
float b1 = 1.f - b;
float b2 = b;
double s = (1. - a)/a;
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
// extracted rectangle is totally inside the image
src += ip.y * src_step + ip.x;
for( ; win_size.height--; src += src_step, dst += dst_step )
{
float prev = (1 - a)*(b1*src[0] + b2*src[src_step]);
for( int j = 0; j < win_size.width; j++ )
{
float t = a12*src[j+1] + a22*src[j+1+src_step];
dst[j] = prev + t;
prev = (float)(t*s);
}
}
}
else
{
getRectSubPix_Cn_<uchar, float, float, nop<float>, nop<float> >
(src, src_step, src_size, dst, dst_step, win_size, center0, cn );
}
}
static void
getQuadrangleSubPix_8u32f_CnR( const uchar* src, size_t src_step, Size src_size,
float* dst, size_t dst_step, Size win_size,
const double *matrix, int cn )
{
int x, y, k;
double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2];
double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5];
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
for( y = 0; y < win_size.height; y++, dst += dst_step )
{
double xs = A12*y + A13;
double ys = A22*y + A23;
double xe = A11*(win_size.width-1) + A12*y + A13;
double ye = A21*(win_size.width-1) + A22*y + A23;
if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) &&
(unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) &&
(unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) &&
(unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3))
{
for( x = 0; x < win_size.width; x++ )
{
int ixs = cvFloor( xs );
int iys = cvFloor( ys );
const uchar *ptr = src + src_step*iys;
float a = (float)(xs - ixs), b = (float)(ys - iys), a1 = 1.f - a, b1 = 1.f - b;
float w00 = a1*b1, w01 = a*b1, w10 = a1*b, w11 = a*b;
xs += A11;
ys += A21;
if( cn == 1 )
{
ptr += ixs;
dst[x] = ptr[0]*w00 + ptr[1]*w01 + ptr[src_step]*w10 + ptr[src_step+1]*w11;
}
else if( cn == 3 )
{
ptr += ixs*3;
float t0 = ptr[0]*w00 + ptr[3]*w01 + ptr[src_step]*w10 + ptr[src_step+3]*w11;
float t1 = ptr[1]*w00 + ptr[4]*w01 + ptr[src_step+1]*w10 + ptr[src_step+4]*w11;
float t2 = ptr[2]*w00 + ptr[5]*w01 + ptr[src_step+2]*w10 + ptr[src_step+5]*w11;
dst[x*3] = t0;
dst[x*3+1] = t1;
dst[x*3+2] = t2;
}
else
{
ptr += ixs*cn;
for( k = 0; k < cn; k++ )
dst[x*cn+k] = ptr[k]*w00 + ptr[k+cn]*w01 +
ptr[src_step+k]*w10 + ptr[src_step+k+cn]*w11;
}
}
}
else
{
for( x = 0; x < win_size.width; x++ )
{
int ixs = cvFloor( xs ), iys = cvFloor( ys );
float a = (float)(xs - ixs), b = (float)(ys - iys), a1 = 1.f - a, b1 = 1.f - b;
float w00 = a1*b1, w01 = a*b1, w10 = a1*b, w11 = a*b;
const uchar *ptr0, *ptr1;
xs += A11; ys += A21;
if( (unsigned)iys < (unsigned)(src_size.height-1) )
ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step;
else
ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step;
if( (unsigned)ixs < (unsigned)(src_size.width-1) )
{
ptr0 += ixs*cn; ptr1 += ixs*cn;
for( k = 0; k < cn; k++ )
dst[x*cn + k] = ptr0[k]*w00 + ptr0[k+cn]*w01 + ptr1[k]*w10 + ptr1[k+cn]*w11;
}
else
{
ixs = ixs < 0 ? 0 : src_size.width - 1;
ptr0 += ixs*cn; ptr1 += ixs*cn;
for( k = 0; k < cn; k++ )
dst[x*cn + k] = ptr0[k]*b1 + ptr1[k]*b;
}
}
}
}
}
}
void cv::getRectSubPix( InputArray _image, Size patchSize, Point2f center,
OutputArray _patch, int patchType )
{
Mat image = _image.getMat();
int depth = image.depth(), cn = image.channels();
int ddepth = patchType < 0 ? depth : CV_MAT_DEPTH(patchType);
CV_Assert( cn == 1 || cn == 3 );
_patch.create(patchSize, CV_MAKETYPE(ddepth, cn));
Mat patch = _patch.getMat();
if( depth == CV_8U && ddepth == CV_8U )
getRectSubPix_Cn_<uchar, uchar, int, scale_fixpt, cast_8u>
(image.data, image.step, image.size(), patch.data, patch.step, patch.size(), center, cn);
else if( depth == CV_8U && ddepth == CV_32F )
getRectSubPix_8u32f
(image.data, image.step, image.size(), (float*)patch.data, patch.step, patch.size(), center, cn);
else if( depth == CV_32F && ddepth == CV_32F )
getRectSubPix_Cn_<float, float, float, nop<float>, nop<float> >
((const float*)image.data, image.step, image.size(), (float*)patch.data, patch.step, patch.size(), center, cn);
else
CV_Error( CV_StsUnsupportedFormat, "Unsupported combination of input and output formats");
}
CV_IMPL void
cvGetRectSubPix( const void* srcarr, void* dstarr, CvPoint2D32f center )
{
cv::Mat src = cv::cvarrToMat(srcarr);
const cv::Mat dst = cv::cvarrToMat(dstarr);
CV_Assert( src.channels() == dst.channels() );
cv::getRectSubPix(src, dst.size(), center, dst, dst.type());
}
CV_IMPL void
cvGetQuadrangleSubPix( const void* srcarr, void* dstarr, const CvMat* mat )
{
cv::Mat src = cv::cvarrToMat(srcarr), m = cv::cvarrToMat(mat);
const cv::Mat dst = cv::cvarrToMat(dstarr);
CV_Assert( src.channels() == dst.channels() );
cv::Size win_size = dst.size();
double matrix[6];
cv::Mat M(2, 3, CV_64F, matrix);
m.convertTo(M, CV_64F);
double dx = (win_size.width - 1)*0.5;
double dy = (win_size.height - 1)*0.5;
matrix[2] -= matrix[0]*dx + matrix[1]*dy;
matrix[5] -= matrix[3]*dx + matrix[4]*dy;
if( src.depth() == CV_8U && dst.depth() == CV_32F )
cv::getQuadrangleSubPix_8u32f_CnR( src.data, src.step, src.size(),
(float*)dst.data, dst.step, dst.size(),
matrix, src.channels());
else
{
CV_Assert( src.depth() == dst.depth() );
cv::warpAffine(src, dst, M, dst.size(),
cv::INTER_LINEAR + cv::WARP_INVERSE_MAP,
cv::BORDER_REPLICATE);
}
}
CV_IMPL int
cvSampleLine( const void* _img, CvPoint pt1, CvPoint pt2,
void* _buffer, int connectivity )
{
cv::Mat img = cv::cvarrToMat(_img);
cv::LineIterator li(img, pt1, pt2, connectivity, false);
uchar* buffer = (uchar*)_buffer;
size_t pixsize = img.elemSize();
if( !buffer )
CV_Error( CV_StsNullPtr, "" );
for( int i = 0; i < li.count; i++, ++li )
{
for( size_t k = 0; k < pixsize; k++ )
*buffer++ = li.ptr[k];
}
return li.count;
}
/* End of file. */