mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
263 lines
7.9 KiB
263 lines
7.9 KiB
11 years ago
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
#include "opencv2/photo.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include "hdr_common.hpp"
|
||
|
#include <iostream>
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
|
||
|
class MergeDebevecImpl : public MergeDebevec
|
||
|
{
|
||
|
public:
|
||
|
MergeDebevecImpl() :
|
||
|
name("MergeDebevec"),
|
||
|
weights(tringleWeights())
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void process(InputArrayOfArrays src, OutputArray dst, const std::vector<float>& times, InputArray input_response)
|
||
|
{
|
||
|
std::vector<Mat> images;
|
||
|
src.getMatVector(images);
|
||
|
dst.create(images[0].size(), CV_MAKETYPE(CV_32F, images[0].channels()));
|
||
|
Mat result = dst.getMat();
|
||
|
|
||
|
CV_Assert(images.size() == times.size());
|
||
|
CV_Assert(images[0].depth() == CV_8U);
|
||
|
checkImageDimensions(images);
|
||
|
|
||
|
Mat response = input_response.getMat();
|
||
|
CV_Assert(response.rows == 256 && response.cols >= images[0].channels());
|
||
|
Mat log_response;
|
||
|
log(response, log_response);
|
||
|
|
||
|
std::vector<float> exp_times(times.size());
|
||
|
for(size_t i = 0; i < exp_times.size(); i++) {
|
||
|
exp_times[i] = logf(times[i]);
|
||
|
}
|
||
|
|
||
|
int channels = images[0].channels();
|
||
|
float *res_ptr = result.ptr<float>();
|
||
|
for(size_t pos = 0; pos < result.total(); pos++, res_ptr += channels) {
|
||
|
|
||
|
std::vector<float> sum(channels, 0);
|
||
|
float weight_sum = 0;
|
||
|
for(size_t im = 0; im < images.size(); im++) {
|
||
|
|
||
|
uchar *img_ptr = images[im].ptr() + channels * pos;
|
||
|
float w = 0;
|
||
|
for(int channel = 0; channel < channels; channel++) {
|
||
|
w += weights.at<float>(img_ptr[channel]);
|
||
|
}
|
||
|
w /= channels;
|
||
|
weight_sum += w;
|
||
|
for(int channel = 0; channel < channels; channel++) {
|
||
|
sum[channel] += w * (log_response.at<float>(img_ptr[channel], channel) - exp_times[im]);
|
||
|
}
|
||
|
}
|
||
|
for(int channel = 0; channel < channels; channel++) {
|
||
|
res_ptr[channel] = exp(sum[channel] / weight_sum);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void process(InputArrayOfArrays src, OutputArray dst, const std::vector<float>& times)
|
||
|
{
|
||
|
Mat response(256, 3, CV_32F);
|
||
|
for(int i = 0; i < 256; i++) {
|
||
|
for(int j = 0; j < 3; j++) {
|
||
|
response.at<float>(i, j) = max(i, 1);
|
||
|
}
|
||
|
}
|
||
|
process(src, dst, times, response);
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
String name;
|
||
|
Mat weights;
|
||
|
};
|
||
|
|
||
|
Ptr<MergeDebevec> createMergeDebevec()
|
||
|
{
|
||
|
return new MergeDebevecImpl;
|
||
|
}
|
||
|
|
||
|
class MergeMertensImpl : public MergeMertens
|
||
|
{
|
||
|
public:
|
||
|
MergeMertensImpl(float wcon, float wsat, float wexp) :
|
||
|
wcon(wcon),
|
||
|
wsat(wsat),
|
||
|
wexp(wexp),
|
||
|
name("MergeMertens")
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void process(InputArrayOfArrays src, OutputArrayOfArrays dst, const std::vector<float>& times, InputArray response)
|
||
|
{
|
||
|
process(src, dst);
|
||
|
}
|
||
|
|
||
|
void process(InputArrayOfArrays src, OutputArray dst)
|
||
|
{
|
||
|
std::vector<Mat> images;
|
||
|
src.getMatVector(images);
|
||
|
checkImageDimensions(images);
|
||
|
|
||
|
std::vector<Mat> weights(images.size());
|
||
|
Mat weight_sum = Mat::zeros(images[0].size(), CV_32FC1);
|
||
|
for(size_t im = 0; im < images.size(); im++) {
|
||
|
Mat img, gray, contrast, saturation, wellexp;
|
||
|
std::vector<Mat> channels(3);
|
||
|
|
||
|
images[im].convertTo(img, CV_32FC3, 1.0/255.0);
|
||
|
cvtColor(img, gray, COLOR_RGB2GRAY);
|
||
|
split(img, channels);
|
||
|
|
||
|
Laplacian(gray, contrast, CV_32F);
|
||
|
contrast = abs(contrast);
|
||
|
|
||
|
Mat mean = (channels[0] + channels[1] + channels[2]) / 3.0f;
|
||
|
saturation = Mat::zeros(channels[0].size(), CV_32FC1);
|
||
|
for(int i = 0; i < 3; i++) {
|
||
|
Mat deviation = channels[i] - mean;
|
||
|
pow(deviation, 2.0, deviation);
|
||
|
saturation += deviation;
|
||
|
}
|
||
|
sqrt(saturation, saturation);
|
||
|
|
||
|
wellexp = Mat::ones(gray.size(), CV_32FC1);
|
||
|
for(int i = 0; i < 3; i++) {
|
||
|
Mat exp = channels[i] - 0.5f;
|
||
|
pow(exp, 2, exp);
|
||
|
exp = -exp / 0.08;
|
||
|
wellexp = wellexp.mul(exp);
|
||
|
}
|
||
|
|
||
|
pow(contrast, wcon, contrast);
|
||
|
pow(saturation, wsat, saturation);
|
||
|
pow(wellexp, wexp, wellexp);
|
||
|
|
||
|
weights[im] = contrast;
|
||
|
weights[im] = weights[im].mul(saturation);
|
||
|
weights[im] = weights[im].mul(wellexp);
|
||
|
weight_sum += weights[im];
|
||
|
}
|
||
|
int maxlevel = static_cast<int>(logf(static_cast<float>(max(images[0].rows, images[0].cols))) / logf(2.0)) - 1;
|
||
|
std::vector<Mat> res_pyr(maxlevel + 1);
|
||
|
|
||
|
for(size_t im = 0; im < images.size(); im++) {
|
||
|
weights[im] /= weight_sum;
|
||
|
Mat img;
|
||
|
images[im].convertTo(img, CV_32FC3, 1/255.0);
|
||
|
std::vector<Mat> img_pyr, weight_pyr;
|
||
|
buildPyramid(img, img_pyr, maxlevel);
|
||
|
buildPyramid(weights[im], weight_pyr, maxlevel);
|
||
|
for(int lvl = 0; lvl < maxlevel; lvl++) {
|
||
|
Mat up;
|
||
|
pyrUp(img_pyr[lvl + 1], up, img_pyr[lvl].size());
|
||
|
img_pyr[lvl] -= up;
|
||
|
}
|
||
|
for(int lvl = 0; lvl <= maxlevel; lvl++) {
|
||
|
std::vector<Mat> channels(3);
|
||
|
split(img_pyr[lvl], channels);
|
||
|
for(int i = 0; i < 3; i++) {
|
||
|
channels[i] = channels[i].mul(weight_pyr[lvl]);
|
||
|
}
|
||
|
merge(channels, img_pyr[lvl]);
|
||
|
if(res_pyr[lvl].empty()) {
|
||
|
res_pyr[lvl] = img_pyr[lvl];
|
||
|
} else {
|
||
|
res_pyr[lvl] += img_pyr[lvl];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for(int lvl = maxlevel; lvl > 0; lvl--) {
|
||
|
Mat up;
|
||
|
pyrUp(res_pyr[lvl], up, res_pyr[lvl - 1].size());
|
||
|
res_pyr[lvl - 1] += up;
|
||
|
}
|
||
|
dst.create(images[0].size(), CV_32FC3);
|
||
|
res_pyr[0].copyTo(dst.getMat());
|
||
|
}
|
||
|
|
||
|
float getContrastWeight() const { return wcon; }
|
||
|
void setContrastWeight(float val) { wcon = val; }
|
||
|
|
||
|
float getSaturationWeight() const { return wsat; }
|
||
|
void setSaturationWeight(float val) { wsat = val; }
|
||
|
|
||
|
float getExposureWeight() const { return wexp; }
|
||
|
void setExposureWeight(float val) { wexp = val; }
|
||
|
|
||
|
void write(FileStorage& fs) const
|
||
|
{
|
||
|
fs << "name" << name
|
||
|
<< "contrast_weight" << wcon
|
||
|
<< "saturation_weight" << wsat
|
||
|
<< "exposure_weight" << wexp;
|
||
|
}
|
||
|
|
||
|
void read(const FileNode& fn)
|
||
|
{
|
||
|
FileNode n = fn["name"];
|
||
|
CV_Assert(n.isString() && String(n) == name);
|
||
|
wcon = fn["contrast_weight"];
|
||
|
wsat = fn["saturation_weight"];
|
||
|
wexp = fn["exposure_weight"];
|
||
|
}
|
||
|
|
||
|
protected:
|
||
|
String name;
|
||
|
float wcon, wsat, wexp;
|
||
|
};
|
||
|
|
||
|
Ptr<MergeMertens> createMergeMertens(float wcon, float wsat, float wexp)
|
||
|
{
|
||
|
return new MergeMertensImpl(wcon, wsat, wexp);
|
||
|
}
|
||
|
|
||
|
}
|