|
|
|
import numpy as np
|
|
|
|
import sys
|
|
|
|
import os
|
|
|
|
import argparse
|
|
|
|
import tensorflow as tf
|
|
|
|
from tensorflow.python.platform import gfile
|
|
|
|
from imagenet_cls_test_alexnet import MeanValueFetch, DnnCaffeModel, Framework, ClsAccEvaluation
|
|
|
|
try:
|
|
|
|
import cv2 as cv
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
|
|
|
|
'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
|
|
|
|
|
|
|
|
# If you've got an exception "Cannot load libmkl_avx.so or libmkl_def.so" or similar, try to export next variable
|
|
|
|
# before running the script:
|
|
|
|
# LD_PRELOAD=/opt/intel/mkl/lib/intel64/libmkl_core.so:/opt/intel/mkl/lib/intel64/libmkl_sequential.so
|
|
|
|
|
|
|
|
|
|
|
|
class TensorflowModel(Framework):
|
|
|
|
sess = tf.Session
|
|
|
|
output = tf.Graph
|
|
|
|
|
|
|
|
def __init__(self, model_file, in_blob_name, out_blob_name):
|
|
|
|
self.in_blob_name = in_blob_name
|
|
|
|
self.sess = tf.Session()
|
|
|
|
with gfile.FastGFile(model_file, 'rb') as f:
|
|
|
|
graph_def = tf.GraphDef()
|
|
|
|
graph_def.ParseFromString(f.read())
|
|
|
|
self.sess.graph.as_default()
|
|
|
|
tf.import_graph_def(graph_def, name='')
|
|
|
|
self.output = self.sess.graph.get_tensor_by_name(out_blob_name + ":0")
|
|
|
|
|
|
|
|
def get_name(self):
|
|
|
|
return 'Tensorflow'
|
|
|
|
|
|
|
|
def get_output(self, input_blob):
|
|
|
|
assert len(input_blob.shape) == 4
|
|
|
|
batch_tf = input_blob.transpose(0, 2, 3, 1)
|
|
|
|
out = self.sess.run(self.output,
|
|
|
|
{self.in_blob_name+':0': batch_tf})
|
|
|
|
out = out[..., 1:1001]
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class DnnTfInceptionModel(DnnCaffeModel):
|
|
|
|
net = cv.dnn.Net()
|
|
|
|
|
|
|
|
def __init__(self, model_file, in_blob_name, out_blob_name):
|
|
|
|
self.net = cv.dnn.readNetFromTensorflow(model_file)
|
|
|
|
self.in_blob_name = in_blob_name
|
|
|
|
self.out_blob_name = out_blob_name
|
|
|
|
|
|
|
|
def get_output(self, input_blob):
|
|
|
|
return super(DnnTfInceptionModel, self).get_output(input_blob)[..., 1:1001]
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--imgs_dir", help="path to ImageNet validation subset images dir, ILSVRC2012_img_val dir")
|
|
|
|
parser.add_argument("--img_cls_file", help="path to file with classes ids for images, download it here:"
|
|
|
|
"https://github.com/opencv/opencv_extra/tree/master/testdata/dnn/img_classes_inception.txt")
|
|
|
|
parser.add_argument("--model", help="path to tensorflow model, download it here:"
|
|
|
|
"https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip")
|
|
|
|
parser.add_argument("--log", help="path to logging file")
|
|
|
|
parser.add_argument("--batch_size", help="size of images in batch", default=1)
|
|
|
|
parser.add_argument("--frame_size", help="size of input image", default=224)
|
|
|
|
parser.add_argument("--in_blob", help="name for input blob", default='input')
|
|
|
|
parser.add_argument("--out_blob", help="name for output blob", default='softmax2')
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
data_fetcher = MeanValueFetch(args.frame_size, args.imgs_dir, True)
|
|
|
|
|
|
|
|
frameworks = [TensorflowModel(args.model, args.in_blob, args.out_blob),
|
|
|
|
DnnTfInceptionModel(args.model, '', args.out_blob)]
|
|
|
|
|
|
|
|
acc_eval = ClsAccEvaluation(args.log, args.img_cls_file, args.batch_size)
|
|
|
|
acc_eval.process(frameworks, data_fetcher)
|