mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
98 lines
3.8 KiB
98 lines
3.8 KiB
10 years ago
|
#ifndef KDTREE_H
|
||
|
#define KDTREE_H
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
namespace ml
|
||
|
{
|
||
|
|
||
|
/*!
|
||
|
Fast Nearest Neighbor Search Class.
|
||
|
|
||
|
The class implements D. Lowe BBF (Best-Bin-First) algorithm for the last
|
||
|
approximate (or accurate) nearest neighbor search in multi-dimensional spaces.
|
||
|
|
||
|
First, a set of vectors is passed to KDTree::KDTree() constructor
|
||
|
or KDTree::build() method, where it is reordered.
|
||
|
|
||
|
Then arbitrary vectors can be passed to KDTree::findNearest() methods, which
|
||
|
find the K nearest neighbors among the vectors from the initial set.
|
||
|
The user can balance between the speed and accuracy of the search by varying Emax
|
||
|
parameter, which is the number of leaves that the algorithm checks.
|
||
|
The larger parameter values yield more accurate results at the expense of lower processing speed.
|
||
|
|
||
|
\code
|
||
|
KDTree T(points, false);
|
||
|
const int K = 3, Emax = INT_MAX;
|
||
|
int idx[K];
|
||
|
float dist[K];
|
||
|
T.findNearest(query_vec, K, Emax, idx, 0, dist);
|
||
|
CV_Assert(dist[0] <= dist[1] && dist[1] <= dist[2]);
|
||
|
\endcode
|
||
|
*/
|
||
|
class CV_EXPORTS_W KDTree
|
||
|
{
|
||
|
public:
|
||
|
/*!
|
||
|
The node of the search tree.
|
||
|
*/
|
||
|
struct Node
|
||
|
{
|
||
|
Node() : idx(-1), left(-1), right(-1), boundary(0.f) {}
|
||
|
Node(int _idx, int _left, int _right, float _boundary)
|
||
|
: idx(_idx), left(_left), right(_right), boundary(_boundary) {}
|
||
|
|
||
|
//! split dimension; >=0 for nodes (dim), < 0 for leaves (index of the point)
|
||
|
int idx;
|
||
|
//! node indices of the left and the right branches
|
||
|
int left, right;
|
||
|
//! go to the left if query_vec[node.idx]<=node.boundary, otherwise go to the right
|
||
|
float boundary;
|
||
|
};
|
||
|
|
||
|
//! the default constructor
|
||
|
CV_WRAP KDTree();
|
||
|
//! the full constructor that builds the search tree
|
||
|
CV_WRAP KDTree(InputArray points, bool copyAndReorderPoints = false);
|
||
|
//! the full constructor that builds the search tree
|
||
|
CV_WRAP KDTree(InputArray points, InputArray _labels,
|
||
|
bool copyAndReorderPoints = false);
|
||
|
//! builds the search tree
|
||
|
CV_WRAP void build(InputArray points, bool copyAndReorderPoints = false);
|
||
|
//! builds the search tree
|
||
|
CV_WRAP void build(InputArray points, InputArray labels,
|
||
|
bool copyAndReorderPoints = false);
|
||
|
//! finds the K nearest neighbors of "vec" while looking at Emax (at most) leaves
|
||
|
CV_WRAP int findNearest(InputArray vec, int K, int Emax,
|
||
|
OutputArray neighborsIdx,
|
||
|
OutputArray neighbors = noArray(),
|
||
|
OutputArray dist = noArray(),
|
||
|
OutputArray labels = noArray()) const;
|
||
|
//! finds all the points from the initial set that belong to the specified box
|
||
|
CV_WRAP void findOrthoRange(InputArray minBounds,
|
||
|
InputArray maxBounds,
|
||
|
OutputArray neighborsIdx,
|
||
|
OutputArray neighbors = noArray(),
|
||
|
OutputArray labels = noArray()) const;
|
||
|
//! returns vectors with the specified indices
|
||
|
CV_WRAP void getPoints(InputArray idx, OutputArray pts,
|
||
|
OutputArray labels = noArray()) const;
|
||
|
//! return a vector with the specified index
|
||
|
const float* getPoint(int ptidx, int* label = 0) const;
|
||
|
//! returns the search space dimensionality
|
||
|
CV_WRAP int dims() const;
|
||
|
|
||
|
std::vector<Node> nodes; //!< all the tree nodes
|
||
|
CV_PROP Mat points; //!< all the points. It can be a reordered copy of the input vector set or the original vector set.
|
||
|
CV_PROP std::vector<int> labels; //!< the parallel array of labels.
|
||
|
CV_PROP int maxDepth; //!< maximum depth of the search tree. Do not modify it
|
||
|
CV_PROP_RW int normType; //!< type of the distance (cv::NORM_L1 or cv::NORM_L2) used for search. Initially set to cv::NORM_L2, but you can modify it
|
||
|
};
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|