mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
635 lines
20 KiB
635 lines
20 KiB
14 years ago
|
/***********************************************************************
|
||
|
* Software License Agreement (BSD License)
|
||
|
*
|
||
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||
|
*
|
||
|
* THE BSD LICENSE
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
*
|
||
|
* 1. Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*************************************************************************/
|
||
|
|
||
|
#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
|
||
|
#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
|
||
|
|
||
|
#include <algorithm>
|
||
|
#include <map>
|
||
|
#include <cassert>
|
||
|
#include <cstring>
|
||
|
|
||
|
#include "general.h"
|
||
|
#include "nn_index.h"
|
||
|
#include "matrix.h"
|
||
|
#include "result_set.h"
|
||
|
#include "heap.h"
|
||
|
#include "allocator.h"
|
||
|
#include "random.h"
|
||
|
#include "saving.h"
|
||
|
|
||
|
namespace cvflann
|
||
|
{
|
||
|
|
||
|
struct KDTreeSingleIndexParams : public IndexParams
|
||
|
{
|
||
|
KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1)
|
||
|
{
|
||
|
(*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE;
|
||
|
(*this)["leaf_max_size"] = leaf_max_size;
|
||
|
(*this)["reorder"] = reorder;
|
||
|
(*this)["dim"] = dim;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Randomized kd-tree index
|
||
|
*
|
||
|
* Contains the k-d trees and other information for indexing a set of points
|
||
|
* for nearest-neighbor matching.
|
||
|
*/
|
||
|
template <typename Distance>
|
||
|
class KDTreeSingleIndex : public NNIndex<Distance>
|
||
|
{
|
||
|
public:
|
||
|
typedef typename Distance::ElementType ElementType;
|
||
|
typedef typename Distance::ResultType DistanceType;
|
||
|
|
||
|
|
||
|
/**
|
||
|
* KDTree constructor
|
||
|
*
|
||
|
* Params:
|
||
|
* inputData = dataset with the input features
|
||
|
* params = parameters passed to the kdtree algorithm
|
||
|
*/
|
||
|
KDTreeSingleIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KDTreeSingleIndexParams(),
|
||
|
Distance d = Distance() ) :
|
||
|
dataset_(inputData), index_params_(params), distance_(d)
|
||
|
{
|
||
|
size_ = dataset_.rows;
|
||
|
dim_ = dataset_.cols;
|
||
|
int dim_param = get_param(params,"dim",-1);
|
||
|
if (dim_param>0) dim_ = dim_param;
|
||
|
leaf_max_size_ = get_param(params,"leaf_max_size",10);
|
||
|
reorder_ = get_param(params,"reorder",true);
|
||
|
|
||
|
// Create a permutable array of indices to the input vectors.
|
||
|
vind_.resize(size_);
|
||
|
for (size_t i = 0; i < size_; i++) {
|
||
|
vind_[i] = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
KDTreeSingleIndex(const KDTreeSingleIndex&);
|
||
|
KDTreeSingleIndex& operator=(const KDTreeSingleIndex&);
|
||
|
|
||
|
/**
|
||
|
* Standard destructor
|
||
|
*/
|
||
|
~KDTreeSingleIndex()
|
||
|
{
|
||
|
if (reorder_) delete[] data_.data;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Builds the index
|
||
|
*/
|
||
|
void buildIndex()
|
||
|
{
|
||
|
computeBoundingBox(root_bbox_);
|
||
|
root_node_ = divideTree(0, size_, root_bbox_ ); // construct the tree
|
||
|
|
||
|
if (reorder_) {
|
||
|
delete[] data_.data;
|
||
|
data_ = cvflann::Matrix<ElementType>(new ElementType[size_*dim_], size_, dim_);
|
||
|
for (size_t i=0; i<size_; ++i) {
|
||
|
for (size_t j=0; j<dim_; ++j) {
|
||
|
data_[i][j] = dataset_[vind_[i]][j];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
data_ = dataset_;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
flann_algorithm_t getType() const
|
||
|
{
|
||
|
return FLANN_INDEX_KDTREE_SINGLE;
|
||
|
}
|
||
|
|
||
|
|
||
|
void saveIndex(FILE* stream)
|
||
|
{
|
||
|
save_value(stream, size_);
|
||
|
save_value(stream, dim_);
|
||
|
save_value(stream, root_bbox_);
|
||
|
save_value(stream, reorder_);
|
||
|
save_value(stream, leaf_max_size_);
|
||
|
save_value(stream, vind_);
|
||
|
if (reorder_) {
|
||
|
save_value(stream, data_);
|
||
|
}
|
||
|
save_tree(stream, root_node_);
|
||
|
}
|
||
|
|
||
|
|
||
|
void loadIndex(FILE* stream)
|
||
|
{
|
||
|
load_value(stream, size_);
|
||
|
load_value(stream, dim_);
|
||
|
load_value(stream, root_bbox_);
|
||
|
load_value(stream, reorder_);
|
||
|
load_value(stream, leaf_max_size_);
|
||
|
load_value(stream, vind_);
|
||
|
if (reorder_) {
|
||
|
load_value(stream, data_);
|
||
|
}
|
||
|
else {
|
||
|
data_ = dataset_;
|
||
|
}
|
||
|
load_tree(stream, root_node_);
|
||
|
|
||
|
|
||
|
index_params_["algorithm"] = getType();
|
||
|
index_params_["leaf_max_size"] = leaf_max_size_;
|
||
|
index_params_["reorder"] = reorder_;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns size of index.
|
||
|
*/
|
||
|
size_t size() const
|
||
|
{
|
||
|
return size_;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the length of an index feature.
|
||
|
*/
|
||
|
size_t veclen() const
|
||
|
{
|
||
|
return dim_;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Computes the inde memory usage
|
||
|
* Returns: memory used by the index
|
||
|
*/
|
||
|
int usedMemory() const
|
||
|
{
|
||
|
return pool_.usedMemory+pool_.wastedMemory+dataset_.rows*sizeof(int); // pool memory and vind array memory
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* \brief Perform k-nearest neighbor search
|
||
|
* \param[in] queries The query points for which to find the nearest neighbors
|
||
|
* \param[out] indices The indices of the nearest neighbors found
|
||
|
* \param[out] dists Distances to the nearest neighbors found
|
||
|
* \param[in] knn Number of nearest neighbors to return
|
||
|
* \param[in] params Search parameters
|
||
|
*/
|
||
|
void knnSearch(const Matrix<ElementType>& queries, Matrix<int>& indices, Matrix<DistanceType>& dists, int knn, const SearchParams& params)
|
||
|
{
|
||
|
assert(queries.cols == veclen());
|
||
|
assert(indices.rows >= queries.rows);
|
||
|
assert(dists.rows >= queries.rows);
|
||
|
assert(int(indices.cols) >= knn);
|
||
|
assert(int(dists.cols) >= knn);
|
||
|
|
||
|
KNNSimpleResultSet<DistanceType> resultSet(knn);
|
||
|
for (size_t i = 0; i < queries.rows; i++) {
|
||
|
resultSet.init(indices[i], dists[i]);
|
||
|
findNeighbors(resultSet, queries[i], params);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
IndexParams getParameters() const
|
||
|
{
|
||
|
return index_params_;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Find set of nearest neighbors to vec. Their indices are stored inside
|
||
|
* the result object.
|
||
|
*
|
||
|
* Params:
|
||
|
* result = the result object in which the indices of the nearest-neighbors are stored
|
||
|
* vec = the vector for which to search the nearest neighbors
|
||
|
* maxCheck = the maximum number of restarts (in a best-bin-first manner)
|
||
|
*/
|
||
|
void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams)
|
||
|
{
|
||
|
float epsError = 1+get_param(searchParams,"eps",0.0f);
|
||
|
|
||
|
std::vector<DistanceType> dists(dim_,0);
|
||
|
DistanceType distsq = computeInitialDistances(vec, dists);
|
||
|
searchLevel(result, vec, root_node_, distsq, dists, epsError);
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
|
||
|
|
||
|
/*--------------------- Internal Data Structures --------------------------*/
|
||
|
struct Node
|
||
|
{
|
||
|
/**
|
||
|
* Indices of points in leaf node
|
||
|
*/
|
||
|
int left, right;
|
||
|
/**
|
||
|
* Dimension used for subdivision.
|
||
|
*/
|
||
|
int divfeat;
|
||
|
/**
|
||
|
* The values used for subdivision.
|
||
|
*/
|
||
|
DistanceType divlow, divhigh;
|
||
|
/**
|
||
|
* The child nodes.
|
||
|
*/
|
||
|
Node* child1, * child2;
|
||
|
};
|
||
|
typedef Node* NodePtr;
|
||
|
|
||
|
|
||
|
struct Interval
|
||
|
{
|
||
|
DistanceType low, high;
|
||
|
};
|
||
|
|
||
|
typedef std::vector<Interval> BoundingBox;
|
||
|
|
||
|
typedef BranchStruct<NodePtr, DistanceType> BranchSt;
|
||
|
typedef BranchSt* Branch;
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
void save_tree(FILE* stream, NodePtr tree)
|
||
|
{
|
||
|
save_value(stream, *tree);
|
||
|
if (tree->child1!=NULL) {
|
||
|
save_tree(stream, tree->child1);
|
||
|
}
|
||
|
if (tree->child2!=NULL) {
|
||
|
save_tree(stream, tree->child2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void load_tree(FILE* stream, NodePtr& tree)
|
||
|
{
|
||
|
tree = pool_.allocate<Node>();
|
||
|
load_value(stream, *tree);
|
||
|
if (tree->child1!=NULL) {
|
||
|
load_tree(stream, tree->child1);
|
||
|
}
|
||
|
if (tree->child2!=NULL) {
|
||
|
load_tree(stream, tree->child2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void computeBoundingBox(BoundingBox& bbox)
|
||
|
{
|
||
|
bbox.resize(dim_);
|
||
|
for (size_t i=0; i<dim_; ++i) {
|
||
|
bbox[i].low = (DistanceType)dataset_[0][i];
|
||
|
bbox[i].high = (DistanceType)dataset_[0][i];
|
||
|
}
|
||
|
for (size_t k=1; k<dataset_.rows; ++k) {
|
||
|
for (size_t i=0; i<dim_; ++i) {
|
||
|
if (dataset_[k][i]<bbox[i].low) bbox[i].low = (DistanceType)dataset_[k][i];
|
||
|
if (dataset_[k][i]>bbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Create a tree node that subdivides the list of vecs from vind[first]
|
||
|
* to vind[last]. The routine is called recursively on each sublist.
|
||
|
* Place a pointer to this new tree node in the location pTree.
|
||
|
*
|
||
|
* Params: pTree = the new node to create
|
||
|
* first = index of the first vector
|
||
|
* last = index of the last vector
|
||
|
*/
|
||
|
NodePtr divideTree(int left, int right, BoundingBox& bbox)
|
||
|
{
|
||
|
NodePtr node = pool_.allocate<Node>(); // allocate memory
|
||
|
|
||
|
/* If too few exemplars remain, then make this a leaf node. */
|
||
|
if ( (right-left) <= leaf_max_size_) {
|
||
|
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
|
||
|
node->left = left;
|
||
|
node->right = right;
|
||
|
|
||
|
// compute bounding-box of leaf points
|
||
|
for (size_t i=0; i<dim_; ++i) {
|
||
|
bbox[i].low = (DistanceType)dataset_[vind_[left]][i];
|
||
|
bbox[i].high = (DistanceType)dataset_[vind_[left]][i];
|
||
|
}
|
||
|
for (int k=left+1; k<right; ++k) {
|
||
|
for (size_t i=0; i<dim_; ++i) {
|
||
|
if (bbox[i].low>dataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i];
|
||
|
if (bbox[i].high<dataset_[vind_[k]][i]) bbox[i].high=(DistanceType)dataset_[vind_[k]][i];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
int idx;
|
||
|
int cutfeat;
|
||
|
DistanceType cutval;
|
||
|
middleSplit_(&vind_[0]+left, right-left, idx, cutfeat, cutval, bbox);
|
||
|
|
||
|
node->divfeat = cutfeat;
|
||
|
|
||
|
BoundingBox left_bbox(bbox);
|
||
|
left_bbox[cutfeat].high = cutval;
|
||
|
node->child1 = divideTree(left, left+idx, left_bbox);
|
||
|
|
||
|
BoundingBox right_bbox(bbox);
|
||
|
right_bbox[cutfeat].low = cutval;
|
||
|
node->child2 = divideTree(left+idx, right, right_bbox);
|
||
|
|
||
|
node->divlow = left_bbox[cutfeat].high;
|
||
|
node->divhigh = right_bbox[cutfeat].low;
|
||
|
|
||
|
for (size_t i=0; i<dim_; ++i) {
|
||
|
bbox[i].low = std::min(left_bbox[i].low, right_bbox[i].low);
|
||
|
bbox[i].high = std::max(left_bbox[i].high, right_bbox[i].high);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
void computeMinMax(int* ind, int count, int dim, ElementType& min_elem, ElementType& max_elem)
|
||
|
{
|
||
|
min_elem = dataset_[ind[0]][dim];
|
||
|
max_elem = dataset_[ind[0]][dim];
|
||
|
for (int i=1; i<count; ++i) {
|
||
|
ElementType val = dataset_[ind[i]][dim];
|
||
|
if (val<min_elem) min_elem = val;
|
||
|
if (val>max_elem) max_elem = val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
|
||
|
{
|
||
|
// find the largest span from the approximate bounding box
|
||
|
ElementType max_span = bbox[0].high-bbox[0].low;
|
||
|
cutfeat = 0;
|
||
|
cutval = (bbox[0].high+bbox[0].low)/2;
|
||
|
for (size_t i=1; i<dim_; ++i) {
|
||
|
ElementType span = bbox[i].low-bbox[i].low;
|
||
|
if (span>max_span) {
|
||
|
max_span = span;
|
||
|
cutfeat = i;
|
||
|
cutval = (bbox[i].high+bbox[i].low)/2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// compute exact span on the found dimension
|
||
|
ElementType min_elem, max_elem;
|
||
|
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
|
||
|
cutval = (min_elem+max_elem)/2;
|
||
|
max_span = max_elem - min_elem;
|
||
|
|
||
|
// check if a dimension of a largest span exists
|
||
|
size_t k = cutfeat;
|
||
|
for (size_t i=0; i<dim_; ++i) {
|
||
|
if (i==k) continue;
|
||
|
ElementType span = bbox[i].high-bbox[i].low;
|
||
|
if (span>max_span) {
|
||
|
computeMinMax(ind, count, i, min_elem, max_elem);
|
||
|
span = max_elem - min_elem;
|
||
|
if (span>max_span) {
|
||
|
max_span = span;
|
||
|
cutfeat = i;
|
||
|
cutval = (min_elem+max_elem)/2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
int lim1, lim2;
|
||
|
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
|
||
|
|
||
|
if (lim1>count/2) index = lim1;
|
||
|
else if (lim2<count/2) index = lim2;
|
||
|
else index = count/2;
|
||
|
}
|
||
|
|
||
|
|
||
|
void middleSplit_(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox)
|
||
|
{
|
||
|
const float EPS=0.00001f;
|
||
|
DistanceType max_span = bbox[0].high-bbox[0].low;
|
||
|
for (size_t i=1; i<dim_; ++i) {
|
||
|
DistanceType span = bbox[i].high-bbox[i].low;
|
||
|
if (span>max_span) {
|
||
|
max_span = span;
|
||
|
}
|
||
|
}
|
||
|
DistanceType max_spread = -1;
|
||
|
cutfeat = 0;
|
||
|
for (size_t i=0; i<dim_; ++i) {
|
||
|
DistanceType span = bbox[i].high-bbox[i].low;
|
||
|
if (span>(DistanceType)((1-EPS)*max_span)) {
|
||
|
ElementType min_elem, max_elem;
|
||
|
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
|
||
|
DistanceType spread = (DistanceType)(max_elem-min_elem);
|
||
|
if (spread>max_spread) {
|
||
|
cutfeat = i;
|
||
|
max_spread = spread;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// split in the middle
|
||
|
DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2;
|
||
|
ElementType min_elem, max_elem;
|
||
|
computeMinMax(ind, count, cutfeat, min_elem, max_elem);
|
||
|
|
||
|
if (split_val<min_elem) cutval = (DistanceType)min_elem;
|
||
|
else if (split_val>max_elem) cutval = (DistanceType)max_elem;
|
||
|
else cutval = split_val;
|
||
|
|
||
|
int lim1, lim2;
|
||
|
planeSplit(ind, count, cutfeat, cutval, lim1, lim2);
|
||
|
|
||
|
if (lim1>count/2) index = lim1;
|
||
|
else if (lim2<count/2) index = lim2;
|
||
|
else index = count/2;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Subdivide the list of points by a plane perpendicular on axe corresponding
|
||
|
* to the 'cutfeat' dimension at 'cutval' position.
|
||
|
*
|
||
|
* On return:
|
||
|
* dataset[ind[0..lim1-1]][cutfeat]<cutval
|
||
|
* dataset[ind[lim1..lim2-1]][cutfeat]==cutval
|
||
|
* dataset[ind[lim2..count]][cutfeat]>cutval
|
||
|
*/
|
||
|
void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2)
|
||
|
{
|
||
|
/* Move vector indices for left subtree to front of list. */
|
||
|
int left = 0;
|
||
|
int right = count-1;
|
||
|
for (;; ) {
|
||
|
while (left<=right && dataset_[ind[left]][cutfeat]<cutval) ++left;
|
||
|
while (left<=right && dataset_[ind[right]][cutfeat]>=cutval) --right;
|
||
|
if (left>right) break;
|
||
|
std::swap(ind[left], ind[right]); ++left; --right;
|
||
|
}
|
||
|
/* If either list is empty, it means that all remaining features
|
||
|
* are identical. Split in the middle to maintain a balanced tree.
|
||
|
*/
|
||
|
lim1 = left;
|
||
|
right = count-1;
|
||
|
for (;; ) {
|
||
|
while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left;
|
||
|
while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right;
|
||
|
if (left>right) break;
|
||
|
std::swap(ind[left], ind[right]); ++left; --right;
|
||
|
}
|
||
|
lim2 = left;
|
||
|
}
|
||
|
|
||
|
DistanceType computeInitialDistances(const ElementType* vec, std::vector<DistanceType>& dists)
|
||
|
{
|
||
|
DistanceType distsq = 0.0;
|
||
|
|
||
|
for (size_t i = 0; i < dim_; ++i) {
|
||
|
if (vec[i] < root_bbox_[i].low) {
|
||
|
dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, i);
|
||
|
distsq += dists[i];
|
||
|
}
|
||
|
if (vec[i] > root_bbox_[i].high) {
|
||
|
dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, i);
|
||
|
distsq += dists[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return distsq;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Performs an exact search in the tree starting from a node.
|
||
|
*/
|
||
|
void searchLevel(ResultSet<DistanceType>& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq,
|
||
|
std::vector<DistanceType>& dists, const float epsError)
|
||
|
{
|
||
|
/* If this is a leaf node, then do check and return. */
|
||
|
if ((node->child1 == NULL)&&(node->child2 == NULL)) {
|
||
|
DistanceType worst_dist = result_set.worstDist();
|
||
|
for (int i=node->left; i<node->right; ++i) {
|
||
|
int index = reorder_ ? i : vind_[i];
|
||
|
DistanceType dist = distance_(vec, data_[index], dim_, worst_dist);
|
||
|
if (dist<worst_dist) {
|
||
|
result_set.addPoint(dist,vind_[i]);
|
||
|
}
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Which child branch should be taken first? */
|
||
|
int idx = node->divfeat;
|
||
|
ElementType val = vec[idx];
|
||
|
DistanceType diff1 = val - node->divlow;
|
||
|
DistanceType diff2 = val - node->divhigh;
|
||
|
|
||
|
NodePtr bestChild;
|
||
|
NodePtr otherChild;
|
||
|
DistanceType cut_dist;
|
||
|
if ((diff1+diff2)<0) {
|
||
|
bestChild = node->child1;
|
||
|
otherChild = node->child2;
|
||
|
cut_dist = distance_.accum_dist(val, node->divhigh, idx);
|
||
|
}
|
||
|
else {
|
||
|
bestChild = node->child2;
|
||
|
otherChild = node->child1;
|
||
|
cut_dist = distance_.accum_dist( val, node->divlow, idx);
|
||
|
}
|
||
|
|
||
|
/* Call recursively to search next level down. */
|
||
|
searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError);
|
||
|
|
||
|
DistanceType dst = dists[idx];
|
||
|
mindistsq = mindistsq + cut_dist - dst;
|
||
|
dists[idx] = cut_dist;
|
||
|
if (mindistsq*epsError<=result_set.worstDist()) {
|
||
|
searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError);
|
||
|
}
|
||
|
dists[idx] = dst;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
|
||
|
/**
|
||
|
* The dataset used by this index
|
||
|
*/
|
||
|
const Matrix<ElementType> dataset_;
|
||
|
|
||
|
IndexParams index_params_;
|
||
|
|
||
|
int leaf_max_size_;
|
||
|
bool reorder_;
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Array of indices to vectors in the dataset.
|
||
|
*/
|
||
|
std::vector<int> vind_;
|
||
|
|
||
|
Matrix<ElementType> data_;
|
||
|
|
||
|
size_t size_;
|
||
|
size_t dim_;
|
||
|
|
||
|
/**
|
||
|
* Array of k-d trees used to find neighbours.
|
||
|
*/
|
||
|
NodePtr root_node_;
|
||
|
|
||
|
BoundingBox root_bbox_;
|
||
|
|
||
|
/**
|
||
|
* Pooled memory allocator.
|
||
|
*
|
||
|
* Using a pooled memory allocator is more efficient
|
||
|
* than allocating memory directly when there is a large
|
||
|
* number small of memory allocations.
|
||
|
*/
|
||
|
PooledAllocator pool_;
|
||
|
|
||
|
Distance distance_;
|
||
|
}; // class KDTree
|
||
|
|
||
|
}
|
||
|
|
||
|
#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_
|