|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
COPYRIGHT NOTICE
|
|
|
|
----------------
|
|
|
|
|
|
|
|
The code has been derived from libsvm library (version 2.6)
|
|
|
|
(http://www.csie.ntu.edu.tw/~cjlin/libsvm).
|
|
|
|
|
|
|
|
Here is the orignal copyright:
|
|
|
|
------------------------------------------------------------------------------------------
|
|
|
|
Copyright (c) 2000-2003 Chih-Chung Chang and Chih-Jen Lin
|
|
|
|
All rights reserved.
|
|
|
|
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
|
|
modification, are permitted provided that the following conditions
|
|
|
|
are met:
|
|
|
|
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
|
|
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
notice, this list of conditions and the following disclaimer in the
|
|
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
|
|
|
|
3. Neither name of copyright holders nor the names of its contributors
|
|
|
|
may be used to endorse or promote products derived from this software
|
|
|
|
without specific prior written permission.
|
|
|
|
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
|
|
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
\****************************************************************************************/
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
#define CV_SVM_MIN_CACHE_SIZE (40 << 20) /* 40Mb */
|
|
|
|
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <ctype.h>
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
typedef float Qfloat;
|
|
|
|
#define QFLOAT_TYPE CV_32F
|
|
|
|
#else
|
|
|
|
typedef double Qfloat;
|
|
|
|
#define QFLOAT_TYPE CV_64F
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Param Grid
|
|
|
|
bool CvParamGrid::check() const
|
|
|
|
{
|
|
|
|
bool ok = false;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvParamGrid::check" );
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
if( min_val > max_val )
|
|
|
|
CV_ERROR( CV_StsBadArg, "Lower bound of the grid must be less then the upper one" );
|
|
|
|
if( min_val < DBL_EPSILON )
|
|
|
|
CV_ERROR( CV_StsBadArg, "Lower bound of the grid must be positive" );
|
|
|
|
if( step < 1. + FLT_EPSILON )
|
|
|
|
CV_ERROR( CV_StsBadArg, "Grid step must greater then 1" );
|
|
|
|
|
|
|
|
ok = true;
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
CvParamGrid CvSVM::get_default_grid( int param_id )
|
|
|
|
{
|
|
|
|
CvParamGrid grid;
|
|
|
|
if( param_id == CvSVM::C )
|
|
|
|
{
|
|
|
|
grid.min_val = 0.1;
|
|
|
|
grid.max_val = 500;
|
|
|
|
grid.step = 5; // total iterations = 5
|
|
|
|
}
|
|
|
|
else if( param_id == CvSVM::GAMMA )
|
|
|
|
{
|
|
|
|
grid.min_val = 1e-5;
|
|
|
|
grid.max_val = 0.6;
|
|
|
|
grid.step = 15; // total iterations = 4
|
|
|
|
}
|
|
|
|
else if( param_id == CvSVM::P )
|
|
|
|
{
|
|
|
|
grid.min_val = 0.01;
|
|
|
|
grid.max_val = 100;
|
|
|
|
grid.step = 7; // total iterations = 4
|
|
|
|
}
|
|
|
|
else if( param_id == CvSVM::NU )
|
|
|
|
{
|
|
|
|
grid.min_val = 0.01;
|
|
|
|
grid.max_val = 0.2;
|
|
|
|
grid.step = 3; // total iterations = 3
|
|
|
|
}
|
|
|
|
else if( param_id == CvSVM::COEF )
|
|
|
|
{
|
|
|
|
grid.min_val = 0.1;
|
|
|
|
grid.max_val = 300;
|
|
|
|
grid.step = 14; // total iterations = 3
|
|
|
|
}
|
|
|
|
else if( param_id == CvSVM::DEGREE )
|
|
|
|
{
|
|
|
|
grid.min_val = 0.01;
|
|
|
|
grid.max_val = 4;
|
|
|
|
grid.step = 7; // total iterations = 3
|
|
|
|
}
|
|
|
|
else
|
|
|
|
cvError( CV_StsBadArg, "CvSVM::get_default_grid", "Invalid type of parameter "
|
|
|
|
"(use one of CvSVM::C, CvSVM::GAMMA et al.)", __FILE__, __LINE__ );
|
|
|
|
return grid;
|
|
|
|
}
|
|
|
|
|
|
|
|
// SVM training parameters
|
|
|
|
CvSVMParams::CvSVMParams() :
|
|
|
|
svm_type(CvSVM::C_SVC), kernel_type(CvSVM::RBF), degree(0),
|
|
|
|
gamma(1), coef0(0), C(1), nu(0), p(0), class_weights(0)
|
|
|
|
{
|
|
|
|
term_crit = cvTermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CvSVMParams::CvSVMParams( int _svm_type, int _kernel_type,
|
|
|
|
double _degree, double _gamma, double _coef0,
|
|
|
|
double _Con, double _nu, double _p,
|
|
|
|
CvMat* _class_weights, CvTermCriteria _term_crit ) :
|
|
|
|
svm_type(_svm_type), kernel_type(_kernel_type),
|
|
|
|
degree(_degree), gamma(_gamma), coef0(_coef0),
|
|
|
|
C(_Con), nu(_nu), p(_p), class_weights(_class_weights), term_crit(_term_crit)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/////////////////////////////////////// SVM kernel ///////////////////////////////////////
|
|
|
|
|
|
|
|
CvSVMKernel::CvSVMKernel()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVMKernel::clear()
|
|
|
|
{
|
|
|
|
params = 0;
|
|
|
|
calc_func = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CvSVMKernel::~CvSVMKernel()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CvSVMKernel::CvSVMKernel( const CvSVMParams* _params, Calc _calc_func )
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
create( _params, _calc_func );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CvSVMKernel::create( const CvSVMParams* _params, Calc _calc_func )
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
params = _params;
|
|
|
|
calc_func = _calc_func;
|
|
|
|
|
|
|
|
if( !calc_func )
|
|
|
|
calc_func = params->kernel_type == CvSVM::RBF ? &CvSVMKernel::calc_rbf :
|
|
|
|
params->kernel_type == CvSVM::POLY ? &CvSVMKernel::calc_poly :
|
|
|
|
params->kernel_type == CvSVM::SIGMOID ? &CvSVMKernel::calc_sigmoid :
|
|
|
|
params->kernel_type == CvSVM::CHI2 ? &CvSVMKernel::calc_chi2 :
|
|
|
|
params->kernel_type == CvSVM::INTER ? &CvSVMKernel::calc_intersec :
|
|
|
|
&CvSVMKernel::calc_linear;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVMKernel::calc_non_rbf_base( int vcount, int var_count, const float** vecs,
|
|
|
|
const float* another, Qfloat* results,
|
|
|
|
double alpha, double beta )
|
|
|
|
{
|
|
|
|
int j, k;
|
|
|
|
for( j = 0; j < vcount; j++ )
|
|
|
|
{
|
|
|
|
const float* sample = vecs[j];
|
|
|
|
double s = 0;
|
|
|
|
for( k = 0; k <= var_count - 4; k += 4 )
|
|
|
|
s += sample[k]*another[k] + sample[k+1]*another[k+1] +
|
|
|
|
sample[k+2]*another[k+2] + sample[k+3]*another[k+3];
|
|
|
|
for( ; k < var_count; k++ )
|
|
|
|
s += sample[k]*another[k];
|
|
|
|
results[j] = (Qfloat)(s*alpha + beta);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVMKernel::calc_linear( int vcount, int var_count, const float** vecs,
|
|
|
|
const float* another, Qfloat* results )
|
|
|
|
{
|
|
|
|
calc_non_rbf_base( vcount, var_count, vecs, another, results, 1, 0 );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVMKernel::calc_poly( int vcount, int var_count, const float** vecs,
|
|
|
|
const float* another, Qfloat* results )
|
|
|
|
{
|
|
|
|
CvMat R = cvMat( 1, vcount, QFLOAT_TYPE, results );
|
|
|
|
calc_non_rbf_base( vcount, var_count, vecs, another, results, params->gamma, params->coef0 );
|
|
|
|
if( vcount > 0 )
|
|
|
|
cvPow( &R, &R, params->degree );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVMKernel::calc_sigmoid( int vcount, int var_count, const float** vecs,
|
|
|
|
const float* another, Qfloat* results )
|
|
|
|
{
|
|
|
|
int j;
|
|
|
|
calc_non_rbf_base( vcount, var_count, vecs, another, results,
|
|
|
|
-2*params->gamma, -2*params->coef0 );
|
|
|
|
// TODO: speedup this
|
|
|
|
for( j = 0; j < vcount; j++ )
|
|
|
|
{
|
|
|
|
Qfloat t = results[j];
|
|
|
|
double e = exp(-fabs(t));
|
|
|
|
if( t > 0 )
|
|
|
|
results[j] = (Qfloat)((1. - e)/(1. + e));
|
|
|
|
else
|
|
|
|
results[j] = (Qfloat)((e - 1.)/(e + 1.));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVMKernel::calc_rbf( int vcount, int var_count, const float** vecs,
|
|
|
|
const float* another, Qfloat* results )
|
|
|
|
{
|
|
|
|
CvMat R = cvMat( 1, vcount, QFLOAT_TYPE, results );
|
|
|
|
double gamma = -params->gamma;
|
|
|
|
int j, k;
|
|
|
|
|
|
|
|
for( j = 0; j < vcount; j++ )
|
|
|
|
{
|
|
|
|
const float* sample = vecs[j];
|
|
|
|
double s = 0;
|
|
|
|
|
|
|
|
for( k = 0; k <= var_count - 4; k += 4 )
|
|
|
|
{
|
|
|
|
double t0 = sample[k] - another[k];
|
|
|
|
double t1 = sample[k+1] - another[k+1];
|
|
|
|
|
|
|
|
s += t0*t0 + t1*t1;
|
|
|
|
|
|
|
|
t0 = sample[k+2] - another[k+2];
|
|
|
|
t1 = sample[k+3] - another[k+3];
|
|
|
|
|
|
|
|
s += t0*t0 + t1*t1;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( ; k < var_count; k++ )
|
|
|
|
{
|
|
|
|
double t0 = sample[k] - another[k];
|
|
|
|
s += t0*t0;
|
|
|
|
}
|
|
|
|
results[j] = (Qfloat)(s*gamma);
|
|
|
|
}
|
|
|
|
|
|
|
|
if( vcount > 0 )
|
|
|
|
cvExp( &R, &R );
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Histogram intersection kernel
|
|
|
|
void CvSVMKernel::calc_intersec( int vcount, int var_count, const float** vecs,
|
|
|
|
const float* another, Qfloat* results )
|
|
|
|
{
|
|
|
|
int j, k;
|
|
|
|
for( j = 0; j < vcount; j++ )
|
|
|
|
{
|
|
|
|
const float* sample = vecs[j];
|
|
|
|
double s = 0;
|
|
|
|
for( k = 0; k <= var_count - 4; k += 4 )
|
|
|
|
s += std::min(sample[k],another[k]) + std::min(sample[k+1],another[k+1]) +
|
|
|
|
std::min(sample[k+2],another[k+2]) + std::min(sample[k+3],another[k+3]);
|
|
|
|
for( ; k < var_count; k++ )
|
|
|
|
s += std::min(sample[k],another[k]);
|
|
|
|
results[j] = (Qfloat)(s);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Exponential chi2 kernel
|
|
|
|
void CvSVMKernel::calc_chi2( int vcount, int var_count, const float** vecs,
|
|
|
|
const float* another, Qfloat* results )
|
|
|
|
{
|
|
|
|
CvMat R = cvMat( 1, vcount, QFLOAT_TYPE, results );
|
|
|
|
double gamma = -params->gamma;
|
|
|
|
int j, k;
|
|
|
|
for( j = 0; j < vcount; j++ )
|
|
|
|
{
|
|
|
|
const float* sample = vecs[j];
|
|
|
|
double chi2 = 0;
|
|
|
|
for(k = 0 ; k < var_count; k++ )
|
|
|
|
{
|
|
|
|
double d = sample[k]-another[k];
|
|
|
|
double devisor = sample[k]+another[k];
|
|
|
|
/// if devisor == 0, the Chi2 distance would be zero, but calculation would rise an error because of deviding by zero
|
|
|
|
if (devisor != 0)
|
|
|
|
{
|
|
|
|
chi2 += d*d/devisor;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
results[j] = (Qfloat) (gamma*chi2);
|
|
|
|
}
|
|
|
|
if( vcount > 0 )
|
|
|
|
cvExp( &R, &R );
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
void CvSVMKernel::calc( int vcount, int var_count, const float** vecs,
|
|
|
|
const float* another, Qfloat* results )
|
|
|
|
{
|
|
|
|
const Qfloat max_val = (Qfloat)(FLT_MAX*1e-3);
|
|
|
|
int j;
|
|
|
|
(this->*calc_func)( vcount, var_count, vecs, another, results );
|
|
|
|
for( j = 0; j < vcount; j++ )
|
|
|
|
{
|
|
|
|
if( results[j] > max_val )
|
|
|
|
results[j] = max_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Generalized SMO+SVMlight algorithm
|
|
|
|
// Solves:
|
|
|
|
//
|
|
|
|
// min [0.5(\alpha^T Q \alpha) + b^T \alpha]
|
|
|
|
//
|
|
|
|
// y^T \alpha = \delta
|
|
|
|
// y_i = +1 or -1
|
|
|
|
// 0 <= alpha_i <= Cp for y_i = 1
|
|
|
|
// 0 <= alpha_i <= Cn for y_i = -1
|
|
|
|
//
|
|
|
|
// Given:
|
|
|
|
//
|
|
|
|
// Q, b, y, Cp, Cn, and an initial feasible point \alpha
|
|
|
|
// l is the size of vectors and matrices
|
|
|
|
// eps is the stopping criterion
|
|
|
|
//
|
|
|
|
// solution will be put in \alpha, objective value will be put in obj
|
|
|
|
//
|
|
|
|
|
|
|
|
void CvSVMSolver::clear()
|
|
|
|
{
|
|
|
|
G = 0;
|
|
|
|
alpha = 0;
|
|
|
|
y = 0;
|
|
|
|
b = 0;
|
|
|
|
buf[0] = buf[1] = 0;
|
|
|
|
cvReleaseMemStorage( &storage );
|
|
|
|
kernel = 0;
|
|
|
|
select_working_set_func = 0;
|
|
|
|
calc_rho_func = 0;
|
|
|
|
|
|
|
|
rows = 0;
|
|
|
|
samples = 0;
|
|
|
|
get_row_func = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CvSVMSolver::CvSVMSolver()
|
|
|
|
{
|
|
|
|
storage = 0;
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CvSVMSolver::~CvSVMSolver()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CvSVMSolver::CvSVMSolver( int _sample_count, int _var_count, const float** _samples, schar* _y,
|
|
|
|
int _alpha_count, double* _alpha, double _Cp, double _Cn,
|
|
|
|
CvMemStorage* _storage, CvSVMKernel* _kernel, GetRow _get_row,
|
|
|
|
SelectWorkingSet _select_working_set, CalcRho _calc_rho )
|
|
|
|
{
|
|
|
|
storage = 0;
|
|
|
|
create( _sample_count, _var_count, _samples, _y, _alpha_count, _alpha, _Cp, _Cn,
|
|
|
|
_storage, _kernel, _get_row, _select_working_set, _calc_rho );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CvSVMSolver::create( int _sample_count, int _var_count, const float** _samples, schar* _y,
|
|
|
|
int _alpha_count, double* _alpha, double _Cp, double _Cn,
|
|
|
|
CvMemStorage* _storage, CvSVMKernel* _kernel, GetRow _get_row,
|
|
|
|
SelectWorkingSet _select_working_set, CalcRho _calc_rho )
|
|
|
|
{
|
|
|
|
bool ok = false;
|
|
|
|
int i, svm_type;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvSVMSolver::create" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int rows_hdr_size;
|
|
|
|
|
|
|
|
clear();
|
|
|
|
|
|
|
|
sample_count = _sample_count;
|
|
|
|
var_count = _var_count;
|
|
|
|
samples = _samples;
|
|
|
|
y = _y;
|
|
|
|
alpha_count = _alpha_count;
|
|
|
|
alpha = _alpha;
|
|
|
|
kernel = _kernel;
|
|
|
|
|
|
|
|
C[0] = _Cn;
|
|
|
|
C[1] = _Cp;
|
|
|
|
eps = kernel->params->term_crit.epsilon;
|
|
|
|
max_iter = kernel->params->term_crit.max_iter;
|
|
|
|
storage = cvCreateChildMemStorage( _storage );
|
|
|
|
|
|
|
|
b = (double*)cvMemStorageAlloc( storage, alpha_count*sizeof(b[0]));
|
|
|
|
alpha_status = (schar*)cvMemStorageAlloc( storage, alpha_count*sizeof(alpha_status[0]));
|
|
|
|
G = (double*)cvMemStorageAlloc( storage, alpha_count*sizeof(G[0]));
|
|
|
|
for( i = 0; i < 2; i++ )
|
|
|
|
buf[i] = (Qfloat*)cvMemStorageAlloc( storage, sample_count*2*sizeof(buf[i][0]) );
|
|
|
|
svm_type = kernel->params->svm_type;
|
|
|
|
|
|
|
|
select_working_set_func = _select_working_set;
|
|
|
|
if( !select_working_set_func )
|
|
|
|
select_working_set_func = svm_type == CvSVM::NU_SVC || svm_type == CvSVM::NU_SVR ?
|
|
|
|
&CvSVMSolver::select_working_set_nu_svm : &CvSVMSolver::select_working_set;
|
|
|
|
|
|
|
|
calc_rho_func = _calc_rho;
|
|
|
|
if( !calc_rho_func )
|
|
|
|
calc_rho_func = svm_type == CvSVM::NU_SVC || svm_type == CvSVM::NU_SVR ?
|
|
|
|
&CvSVMSolver::calc_rho_nu_svm : &CvSVMSolver::calc_rho;
|
|
|
|
|
|
|
|
get_row_func = _get_row;
|
|
|
|
if( !get_row_func )
|
|
|
|
get_row_func = params->svm_type == CvSVM::EPS_SVR ||
|
|
|
|
params->svm_type == CvSVM::NU_SVR ? &CvSVMSolver::get_row_svr :
|
|
|
|
params->svm_type == CvSVM::C_SVC ||
|
|
|
|
params->svm_type == CvSVM::NU_SVC ? &CvSVMSolver::get_row_svc :
|
|
|
|
&CvSVMSolver::get_row_one_class;
|
|
|
|
|
|
|
|
cache_line_size = sample_count*sizeof(Qfloat);
|
|
|
|
// cache size = max(num_of_samples^2*sizeof(Qfloat)*0.25, 64Kb)
|
|
|
|
// (assuming that for large training sets ~25% of Q matrix is used)
|
|
|
|
cache_size = MAX( cache_line_size*sample_count/4, CV_SVM_MIN_CACHE_SIZE );
|
|
|
|
|
|
|
|
// the size of Q matrix row headers
|
|
|
|
rows_hdr_size = sample_count*sizeof(rows[0]);
|
|
|
|
if( rows_hdr_size > storage->block_size )
|
|
|
|
CV_ERROR( CV_StsOutOfRange, "Too small storage block size" );
|
|
|
|
|
|
|
|
lru_list.prev = lru_list.next = &lru_list;
|
|
|
|
rows = (CvSVMKernelRow*)cvMemStorageAlloc( storage, rows_hdr_size );
|
|
|
|
memset( rows, 0, rows_hdr_size );
|
|
|
|
|
|
|
|
ok = true;
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
float* CvSVMSolver::get_row_base( int i, bool* _existed )
|
|
|
|
{
|
|
|
|
int i1 = i < sample_count ? i : i - sample_count;
|
|
|
|
CvSVMKernelRow* row = rows + i1;
|
|
|
|
bool existed = row->data != 0;
|
|
|
|
Qfloat* data;
|
|
|
|
|
|
|
|
if( existed || cache_size <= 0 )
|
|
|
|
{
|
|
|
|
CvSVMKernelRow* del_row = existed ? row : lru_list.prev;
|
|
|
|
data = del_row->data;
|
|
|
|
assert( data != 0 );
|
|
|
|
|
|
|
|
// delete row from the LRU list
|
|
|
|
del_row->data = 0;
|
|
|
|
del_row->prev->next = del_row->next;
|
|
|
|
del_row->next->prev = del_row->prev;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
data = (Qfloat*)cvMemStorageAlloc( storage, cache_line_size );
|
|
|
|
cache_size -= cache_line_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
// insert row into the LRU list
|
|
|
|
row->data = data;
|
|
|
|
row->prev = &lru_list;
|
|
|
|
row->next = lru_list.next;
|
|
|
|
row->prev->next = row->next->prev = row;
|
|
|
|
|
|
|
|
if( !existed )
|
|
|
|
{
|
|
|
|
kernel->calc( sample_count, var_count, samples, samples[i1], row->data );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( _existed )
|
|
|
|
*_existed = existed;
|
|
|
|
|
|
|
|
return row->data;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
float* CvSVMSolver::get_row_svc( int i, float* row, float*, bool existed )
|
|
|
|
{
|
|
|
|
if( !existed )
|
|
|
|
{
|
|
|
|
const schar* _y = y;
|
|
|
|
int j, len = sample_count;
|
|
|
|
assert( _y && i < sample_count );
|
|
|
|
|
|
|
|
if( _y[i] > 0 )
|
|
|
|
{
|
|
|
|
for( j = 0; j < len; j++ )
|
|
|
|
row[j] = _y[j]*row[j];
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for( j = 0; j < len; j++ )
|
|
|
|
row[j] = -_y[j]*row[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return row;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
float* CvSVMSolver::get_row_one_class( int, float* row, float*, bool )
|
|
|
|
{
|
|
|
|
return row;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
float* CvSVMSolver::get_row_svr( int i, float* row, float* dst, bool )
|
|
|
|
{
|
|
|
|
int j, len = sample_count;
|
|
|
|
Qfloat* dst_pos = dst;
|
|
|
|
Qfloat* dst_neg = dst + len;
|
|
|
|
if( i >= len )
|
|
|
|
{
|
|
|
|
Qfloat* temp;
|
|
|
|
CV_SWAP( dst_pos, dst_neg, temp );
|
|
|
|
}
|
|
|
|
|
|
|
|
for( j = 0; j < len; j++ )
|
|
|
|
{
|
|
|
|
Qfloat t = row[j];
|
|
|
|
dst_pos[j] = t;
|
|
|
|
dst_neg[j] = -t;
|
|
|
|
}
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float* CvSVMSolver::get_row( int i, float* dst )
|
|
|
|
{
|
|
|
|
bool existed = false;
|
|
|
|
float* row = get_row_base( i, &existed );
|
|
|
|
return (this->*get_row_func)( i, row, dst, existed );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#undef is_upper_bound
|
|
|
|
#define is_upper_bound(i) (alpha_status[i] > 0)
|
|
|
|
|
|
|
|
#undef is_lower_bound
|
|
|
|
#define is_lower_bound(i) (alpha_status[i] < 0)
|
|
|
|
|
|
|
|
#undef is_free
|
|
|
|
#define is_free(i) (alpha_status[i] == 0)
|
|
|
|
|
|
|
|
#undef get_C
|
|
|
|
#define get_C(i) (C[y[i]>0])
|
|
|
|
|
|
|
|
#undef update_alpha_status
|
|
|
|
#define update_alpha_status(i) \
|
|
|
|
alpha_status[i] = (schar)(alpha[i] >= get_C(i) ? 1 : alpha[i] <= 0 ? -1 : 0)
|
|
|
|
|
|
|
|
#undef reconstruct_gradient
|
|
|
|
#define reconstruct_gradient() /* empty for now */
|
|
|
|
|
|
|
|
|
|
|
|
bool CvSVMSolver::solve_generic( CvSVMSolutionInfo& si )
|
|
|
|
{
|
|
|
|
int iter = 0;
|
|
|
|
int i, j, k;
|
|
|
|
|
|
|
|
// 1. initialize gradient and alpha status
|
|
|
|
for( i = 0; i < alpha_count; i++ )
|
|
|
|
{
|
|
|
|
update_alpha_status(i);
|
|
|
|
G[i] = b[i];
|
|
|
|
if( fabs(G[i]) > 1e200 )
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( i = 0; i < alpha_count; i++ )
|
|
|
|
{
|
|
|
|
if( !is_lower_bound(i) )
|
|
|
|
{
|
|
|
|
const Qfloat *Q_i = get_row( i, buf[0] );
|
|
|
|
double alpha_i = alpha[i];
|
|
|
|
|
|
|
|
for( j = 0; j < alpha_count; j++ )
|
|
|
|
G[j] += alpha_i*Q_i[j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// 2. optimization loop
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
const Qfloat *Q_i, *Q_j;
|
|
|
|
double C_i, C_j;
|
|
|
|
double old_alpha_i, old_alpha_j, alpha_i, alpha_j;
|
|
|
|
double delta_alpha_i, delta_alpha_j;
|
|
|
|
|
|
|
|
#ifdef _DEBUG
|
|
|
|
for( i = 0; i < alpha_count; i++ )
|
|
|
|
{
|
|
|
|
if( fabs(G[i]) > 1e+300 )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if( fabs(alpha[i]) > 1e16 )
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if( (this->*select_working_set_func)( i, j ) != 0 || iter++ >= max_iter )
|
|
|
|
break;
|
|
|
|
|
|
|
|
Q_i = get_row( i, buf[0] );
|
|
|
|
Q_j = get_row( j, buf[1] );
|
|
|
|
|
|
|
|
C_i = get_C(i);
|
|
|
|
C_j = get_C(j);
|
|
|
|
|
|
|
|
alpha_i = old_alpha_i = alpha[i];
|
|
|
|
alpha_j = old_alpha_j = alpha[j];
|
|
|
|
|
|
|
|
if( y[i] != y[j] )
|
|
|
|
{
|
|
|
|
double denom = Q_i[i]+Q_j[j]+2*Q_i[j];
|
|
|
|
double delta = (-G[i]-G[j])/MAX(fabs(denom),FLT_EPSILON);
|
|
|
|
double diff = alpha_i - alpha_j;
|
|
|
|
alpha_i += delta;
|
|
|
|
alpha_j += delta;
|
|
|
|
|
|
|
|
if( diff > 0 && alpha_j < 0 )
|
|
|
|
{
|
|
|
|
alpha_j = 0;
|
|
|
|
alpha_i = diff;
|
|
|
|
}
|
|
|
|
else if( diff <= 0 && alpha_i < 0 )
|
|
|
|
{
|
|
|
|
alpha_i = 0;
|
|
|
|
alpha_j = -diff;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( diff > C_i - C_j && alpha_i > C_i )
|
|
|
|
{
|
|
|
|
alpha_i = C_i;
|
|
|
|
alpha_j = C_i - diff;
|
|
|
|
}
|
|
|
|
else if( diff <= C_i - C_j && alpha_j > C_j )
|
|
|
|
{
|
|
|
|
alpha_j = C_j;
|
|
|
|
alpha_i = C_j + diff;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
double denom = Q_i[i]+Q_j[j]-2*Q_i[j];
|
|
|
|
double delta = (G[i]-G[j])/MAX(fabs(denom),FLT_EPSILON);
|
|
|
|
double sum = alpha_i + alpha_j;
|
|
|
|
alpha_i -= delta;
|
|
|
|
alpha_j += delta;
|
|
|
|
|
|
|
|
if( sum > C_i && alpha_i > C_i )
|
|
|
|
{
|
|
|
|
alpha_i = C_i;
|
|
|
|
alpha_j = sum - C_i;
|
|
|
|
}
|
|
|
|
else if( sum <= C_i && alpha_j < 0)
|
|
|
|
{
|
|
|
|
alpha_j = 0;
|
|
|
|
alpha_i = sum;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( sum > C_j && alpha_j > C_j )
|
|
|
|
{
|
|
|
|
alpha_j = C_j;
|
|
|
|
alpha_i = sum - C_j;
|
|
|
|
}
|
|
|
|
else if( sum <= C_j && alpha_i < 0 )
|
|
|
|
{
|
|
|
|
alpha_i = 0;
|
|
|
|
alpha_j = sum;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// update alpha
|
|
|
|
alpha[i] = alpha_i;
|
|
|
|
alpha[j] = alpha_j;
|
|
|
|
update_alpha_status(i);
|
|
|
|
update_alpha_status(j);
|
|
|
|
|
|
|
|
// update G
|
|
|
|
delta_alpha_i = alpha_i - old_alpha_i;
|
|
|
|
delta_alpha_j = alpha_j - old_alpha_j;
|
|
|
|
|
|
|
|
for( k = 0; k < alpha_count; k++ )
|
|
|
|
G[k] += Q_i[k]*delta_alpha_i + Q_j[k]*delta_alpha_j;
|
|
|
|
}
|
|
|
|
|
|
|
|
// calculate rho
|
|
|
|
(this->*calc_rho_func)( si.rho, si.r );
|
|
|
|
|
|
|
|
// calculate objective value
|
|
|
|
for( i = 0, si.obj = 0; i < alpha_count; i++ )
|
|
|
|
si.obj += alpha[i] * (G[i] + b[i]);
|
|
|
|
|
|
|
|
si.obj *= 0.5;
|
|
|
|
|
|
|
|
si.upper_bound_p = C[1];
|
|
|
|
si.upper_bound_n = C[0];
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// return 1 if already optimal, return 0 otherwise
|
|
|
|
bool
|
|
|
|
CvSVMSolver::select_working_set( int& out_i, int& out_j )
|
|
|
|
{
|
|
|
|
// return i,j which maximize -grad(f)^T d , under constraint
|
|
|
|
// if alpha_i == C, d != +1
|
|
|
|
// if alpha_i == 0, d != -1
|
|
|
|
double Gmax1 = -DBL_MAX; // max { -grad(f)_i * d | y_i*d = +1 }
|
|
|
|
int Gmax1_idx = -1;
|
|
|
|
|
|
|
|
double Gmax2 = -DBL_MAX; // max { -grad(f)_i * d | y_i*d = -1 }
|
|
|
|
int Gmax2_idx = -1;
|
|
|
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for( i = 0; i < alpha_count; i++ )
|
|
|
|
{
|
|
|
|
double t;
|
|
|
|
|
|
|
|
if( y[i] > 0 ) // y = +1
|
|
|
|
{
|
|
|
|
if( !is_upper_bound(i) && (t = -G[i]) > Gmax1 ) // d = +1
|
|
|
|
{
|
|
|
|
Gmax1 = t;
|
|
|
|
Gmax1_idx = i;
|
|
|
|
}
|
|
|
|
if( !is_lower_bound(i) && (t = G[i]) > Gmax2 ) // d = -1
|
|
|
|
{
|
|
|
|
Gmax2 = t;
|
|
|
|
Gmax2_idx = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else // y = -1
|
|
|
|
{
|
|
|
|
if( !is_upper_bound(i) && (t = -G[i]) > Gmax2 ) // d = +1
|
|
|
|
{
|
|
|
|
Gmax2 = t;
|
|
|
|
Gmax2_idx = i;
|
|
|
|
}
|
|
|
|
if( !is_lower_bound(i) && (t = G[i]) > Gmax1 ) // d = -1
|
|
|
|
{
|
|
|
|
Gmax1 = t;
|
|
|
|
Gmax1_idx = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
out_i = Gmax1_idx;
|
|
|
|
out_j = Gmax2_idx;
|
|
|
|
|
|
|
|
return Gmax1 + Gmax2 < eps;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
CvSVMSolver::calc_rho( double& rho, double& r )
|
|
|
|
{
|
|
|
|
int i, nr_free = 0;
|
|
|
|
double ub = DBL_MAX, lb = -DBL_MAX, sum_free = 0;
|
|
|
|
|
|
|
|
for( i = 0; i < alpha_count; i++ )
|
|
|
|
{
|
|
|
|
double yG = y[i]*G[i];
|
|
|
|
|
|
|
|
if( is_lower_bound(i) )
|
|
|
|
{
|
|
|
|
if( y[i] > 0 )
|
|
|
|
ub = MIN(ub,yG);
|
|
|
|
else
|
|
|
|
lb = MAX(lb,yG);
|
|
|
|
}
|
|
|
|
else if( is_upper_bound(i) )
|
|
|
|
{
|
|
|
|
if( y[i] < 0)
|
|
|
|
ub = MIN(ub,yG);
|
|
|
|
else
|
|
|
|
lb = MAX(lb,yG);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
++nr_free;
|
|
|
|
sum_free += yG;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
rho = nr_free > 0 ? sum_free/nr_free : (ub + lb)*0.5;
|
|
|
|
r = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool
|
|
|
|
CvSVMSolver::select_working_set_nu_svm( int& out_i, int& out_j )
|
|
|
|
{
|
|
|
|
// return i,j which maximize -grad(f)^T d , under constraint
|
|
|
|
// if alpha_i == C, d != +1
|
|
|
|
// if alpha_i == 0, d != -1
|
|
|
|
double Gmax1 = -DBL_MAX; // max { -grad(f)_i * d | y_i = +1, d = +1 }
|
|
|
|
int Gmax1_idx = -1;
|
|
|
|
|
|
|
|
double Gmax2 = -DBL_MAX; // max { -grad(f)_i * d | y_i = +1, d = -1 }
|
|
|
|
int Gmax2_idx = -1;
|
|
|
|
|
|
|
|
double Gmax3 = -DBL_MAX; // max { -grad(f)_i * d | y_i = -1, d = +1 }
|
|
|
|
int Gmax3_idx = -1;
|
|
|
|
|
|
|
|
double Gmax4 = -DBL_MAX; // max { -grad(f)_i * d | y_i = -1, d = -1 }
|
|
|
|
int Gmax4_idx = -1;
|
|
|
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for( i = 0; i < alpha_count; i++ )
|
|
|
|
{
|
|
|
|
double t;
|
|
|
|
|
|
|
|
if( y[i] > 0 ) // y == +1
|
|
|
|
{
|
|
|
|
if( !is_upper_bound(i) && (t = -G[i]) > Gmax1 ) // d = +1
|
|
|
|
{
|
|
|
|
Gmax1 = t;
|
|
|
|
Gmax1_idx = i;
|
|
|
|
}
|
|
|
|
if( !is_lower_bound(i) && (t = G[i]) > Gmax2 ) // d = -1
|
|
|
|
{
|
|
|
|
Gmax2 = t;
|
|
|
|
Gmax2_idx = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else // y == -1
|
|
|
|
{
|
|
|
|
if( !is_upper_bound(i) && (t = -G[i]) > Gmax3 ) // d = +1
|
|
|
|
{
|
|
|
|
Gmax3 = t;
|
|
|
|
Gmax3_idx = i;
|
|
|
|
}
|
|
|
|
if( !is_lower_bound(i) && (t = G[i]) > Gmax4 ) // d = -1
|
|
|
|
{
|
|
|
|
Gmax4 = t;
|
|
|
|
Gmax4_idx = i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( MAX(Gmax1 + Gmax2, Gmax3 + Gmax4) < eps )
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
if( Gmax1 + Gmax2 > Gmax3 + Gmax4 )
|
|
|
|
{
|
|
|
|
out_i = Gmax1_idx;
|
|
|
|
out_j = Gmax2_idx;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
out_i = Gmax3_idx;
|
|
|
|
out_j = Gmax4_idx;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
|
|
CvSVMSolver::calc_rho_nu_svm( double& rho, double& r )
|
|
|
|
{
|
|
|
|
int nr_free1 = 0, nr_free2 = 0;
|
|
|
|
double ub1 = DBL_MAX, ub2 = DBL_MAX;
|
|
|
|
double lb1 = -DBL_MAX, lb2 = -DBL_MAX;
|
|
|
|
double sum_free1 = 0, sum_free2 = 0;
|
|
|
|
double r1, r2;
|
|
|
|
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for( i = 0; i < alpha_count; i++ )
|
|
|
|
{
|
|
|
|
double G_i = G[i];
|
|
|
|
if( y[i] > 0 )
|
|
|
|
{
|
|
|
|
if( is_lower_bound(i) )
|
|
|
|
ub1 = MIN( ub1, G_i );
|
|
|
|
else if( is_upper_bound(i) )
|
|
|
|
lb1 = MAX( lb1, G_i );
|
|
|
|
else
|
|
|
|
{
|
|
|
|
++nr_free1;
|
|
|
|
sum_free1 += G_i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if( is_lower_bound(i) )
|
|
|
|
ub2 = MIN( ub2, G_i );
|
|
|
|
else if( is_upper_bound(i) )
|
|
|
|
lb2 = MAX( lb2, G_i );
|
|
|
|
else
|
|
|
|
{
|
|
|
|
++nr_free2;
|
|
|
|
sum_free2 += G_i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
r1 = nr_free1 > 0 ? sum_free1/nr_free1 : (ub1 + lb1)*0.5;
|
|
|
|
r2 = nr_free2 > 0 ? sum_free2/nr_free2 : (ub2 + lb2)*0.5;
|
|
|
|
|
|
|
|
rho = (r1 - r2)*0.5;
|
|
|
|
r = (r1 + r2)*0.5;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
///////////////////////// construct and solve various formulations ///////////////////////
|
|
|
|
*/
|
|
|
|
|
|
|
|
bool CvSVMSolver::solve_c_svc( int _sample_count, int _var_count, const float** _samples, schar* _y,
|
|
|
|
double _Cp, double _Cn, CvMemStorage* _storage,
|
|
|
|
CvSVMKernel* _kernel, double* _alpha, CvSVMSolutionInfo& _si )
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
if( !create( _sample_count, _var_count, _samples, _y, _sample_count,
|
|
|
|
_alpha, _Cp, _Cn, _storage, _kernel, &CvSVMSolver::get_row_svc,
|
|
|
|
&CvSVMSolver::select_working_set, &CvSVMSolver::calc_rho ))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
|
|
{
|
|
|
|
alpha[i] = 0;
|
|
|
|
b[i] = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !solve_generic( _si ))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
|
|
alpha[i] *= y[i];
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CvSVMSolver::solve_nu_svc( int _sample_count, int _var_count, const float** _samples, schar* _y,
|
|
|
|
CvMemStorage* _storage, CvSVMKernel* _kernel,
|
|
|
|
double* _alpha, CvSVMSolutionInfo& _si )
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
double sum_pos, sum_neg, inv_r;
|
|
|
|
|
|
|
|
if( !create( _sample_count, _var_count, _samples, _y, _sample_count,
|
|
|
|
_alpha, 1., 1., _storage, _kernel, &CvSVMSolver::get_row_svc,
|
|
|
|
&CvSVMSolver::select_working_set_nu_svm, &CvSVMSolver::calc_rho_nu_svm ))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
sum_pos = kernel->params->nu * sample_count * 0.5;
|
|
|
|
sum_neg = kernel->params->nu * sample_count * 0.5;
|
|
|
|
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
|
|
{
|
|
|
|
if( y[i] > 0 )
|
|
|
|
{
|
|
|
|
alpha[i] = MIN(1.0, sum_pos);
|
|
|
|
sum_pos -= alpha[i];
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
alpha[i] = MIN(1.0, sum_neg);
|
|
|
|
sum_neg -= alpha[i];
|
|
|
|
}
|
|
|
|
b[i] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !solve_generic( _si ))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
inv_r = 1./_si.r;
|
|
|
|
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
|
|
alpha[i] *= y[i]*inv_r;
|
|
|
|
|
|
|
|
_si.rho *= inv_r;
|
|
|
|
_si.obj *= (inv_r*inv_r);
|
|
|
|
_si.upper_bound_p = inv_r;
|
|
|
|
_si.upper_bound_n = inv_r;
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CvSVMSolver::solve_one_class( int _sample_count, int _var_count, const float** _samples,
|
|
|
|
CvMemStorage* _storage, CvSVMKernel* _kernel,
|
|
|
|
double* _alpha, CvSVMSolutionInfo& _si )
|
|
|
|
{
|
|
|
|
int i, n;
|
|
|
|
double nu = _kernel->params->nu;
|
|
|
|
|
|
|
|
if( !create( _sample_count, _var_count, _samples, 0, _sample_count,
|
|
|
|
_alpha, 1., 1., _storage, _kernel, &CvSVMSolver::get_row_one_class,
|
|
|
|
&CvSVMSolver::select_working_set, &CvSVMSolver::calc_rho ))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
y = (schar*)cvMemStorageAlloc( storage, sample_count*sizeof(y[0]) );
|
|
|
|
n = cvRound( nu*sample_count );
|
|
|
|
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
|
|
{
|
|
|
|
y[i] = 1;
|
|
|
|
b[i] = 0;
|
|
|
|
alpha[i] = i < n ? 1 : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( n < sample_count )
|
|
|
|
alpha[n] = nu * sample_count - n;
|
|
|
|
else
|
|
|
|
alpha[n-1] = nu * sample_count - (n-1);
|
|
|
|
|
|
|
|
return solve_generic(_si);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CvSVMSolver::solve_eps_svr( int _sample_count, int _var_count, const float** _samples,
|
|
|
|
const float* _y, CvMemStorage* _storage,
|
|
|
|
CvSVMKernel* _kernel, double* _alpha, CvSVMSolutionInfo& _si )
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
double p = _kernel->params->p, kernel_param_c = _kernel->params->C;
|
|
|
|
|
|
|
|
if( !create( _sample_count, _var_count, _samples, 0,
|
|
|
|
_sample_count*2, 0, kernel_param_c, kernel_param_c, _storage, _kernel, &CvSVMSolver::get_row_svr,
|
|
|
|
&CvSVMSolver::select_working_set, &CvSVMSolver::calc_rho ))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
y = (schar*)cvMemStorageAlloc( storage, sample_count*2*sizeof(y[0]) );
|
|
|
|
alpha = (double*)cvMemStorageAlloc( storage, alpha_count*sizeof(alpha[0]) );
|
|
|
|
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
|
|
{
|
|
|
|
alpha[i] = 0;
|
|
|
|
b[i] = p - _y[i];
|
|
|
|
y[i] = 1;
|
|
|
|
|
|
|
|
alpha[i+sample_count] = 0;
|
|
|
|
b[i+sample_count] = p + _y[i];
|
|
|
|
y[i+sample_count] = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !solve_generic( _si ))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
|
|
_alpha[i] = alpha[i] - alpha[i+sample_count];
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CvSVMSolver::solve_nu_svr( int _sample_count, int _var_count, const float** _samples,
|
|
|
|
const float* _y, CvMemStorage* _storage,
|
|
|
|
CvSVMKernel* _kernel, double* _alpha, CvSVMSolutionInfo& _si )
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
double kernel_param_c = _kernel->params->C, sum;
|
|
|
|
|
|
|
|
if( !create( _sample_count, _var_count, _samples, 0,
|
|
|
|
_sample_count*2, 0, 1., 1., _storage, _kernel, &CvSVMSolver::get_row_svr,
|
|
|
|
&CvSVMSolver::select_working_set_nu_svm, &CvSVMSolver::calc_rho_nu_svm ))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
y = (schar*)cvMemStorageAlloc( storage, sample_count*2*sizeof(y[0]) );
|
|
|
|
alpha = (double*)cvMemStorageAlloc( storage, alpha_count*sizeof(alpha[0]) );
|
|
|
|
sum = kernel_param_c * _kernel->params->nu * sample_count * 0.5;
|
|
|
|
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
|
|
{
|
|
|
|
alpha[i] = alpha[i + sample_count] = MIN(sum, kernel_param_c);
|
|
|
|
sum -= alpha[i];
|
|
|
|
|
|
|
|
b[i] = -_y[i];
|
|
|
|
y[i] = 1;
|
|
|
|
|
|
|
|
b[i + sample_count] = _y[i];
|
|
|
|
y[i + sample_count] = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !solve_generic( _si ))
|
|
|
|
return false;
|
|
|
|
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
|
|
_alpha[i] = alpha[i] - alpha[i+sample_count];
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
CvSVM::CvSVM()
|
|
|
|
{
|
|
|
|
decision_func = 0;
|
|
|
|
class_labels = 0;
|
|
|
|
class_weights = 0;
|
|
|
|
storage = 0;
|
|
|
|
var_idx = 0;
|
|
|
|
kernel = 0;
|
|
|
|
solver = 0;
|
|
|
|
default_model_name = "my_svm";
|
|
|
|
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CvSVM::~CvSVM()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVM::clear()
|
|
|
|
{
|
|
|
|
cvFree( &decision_func );
|
|
|
|
cvReleaseMat( &class_labels );
|
|
|
|
cvReleaseMat( &class_weights );
|
|
|
|
cvReleaseMemStorage( &storage );
|
|
|
|
cvReleaseMat( &var_idx );
|
|
|
|
delete kernel;
|
|
|
|
delete solver;
|
|
|
|
kernel = 0;
|
|
|
|
solver = 0;
|
|
|
|
var_all = 0;
|
|
|
|
sv = 0;
|
|
|
|
sv_total = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CvSVM::CvSVM( const CvMat* _train_data, const CvMat* _responses,
|
|
|
|
const CvMat* _var_idx, const CvMat* _sample_idx, CvSVMParams _params )
|
|
|
|
{
|
|
|
|
decision_func = 0;
|
|
|
|
class_labels = 0;
|
|
|
|
class_weights = 0;
|
|
|
|
storage = 0;
|
|
|
|
var_idx = 0;
|
|
|
|
kernel = 0;
|
|
|
|
solver = 0;
|
|
|
|
default_model_name = "my_svm";
|
|
|
|
|
|
|
|
train( _train_data, _responses, _var_idx, _sample_idx, _params );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CvSVM::get_support_vector_count() const
|
|
|
|
{
|
|
|
|
return sv_total;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const float* CvSVM::get_support_vector(int i) const
|
|
|
|
{
|
|
|
|
return sv && (unsigned)i < (unsigned)sv_total ? sv[i] : 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CvSVM::set_params( const CvSVMParams& _params )
|
|
|
|
{
|
|
|
|
bool ok = false;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvSVM::set_params" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int kernel_type, svm_type;
|
|
|
|
|
|
|
|
params = _params;
|
|
|
|
|
|
|
|
kernel_type = params.kernel_type;
|
|
|
|
svm_type = params.svm_type;
|
|
|
|
|
|
|
|
if( kernel_type != LINEAR && kernel_type != POLY &&
|
|
|
|
kernel_type != SIGMOID && kernel_type != RBF &&
|
|
|
|
kernel_type != INTER && kernel_type != CHI2)
|
|
|
|
CV_ERROR( CV_StsBadArg, "Unknown/unsupported kernel type" );
|
|
|
|
|
|
|
|
if( kernel_type == LINEAR )
|
|
|
|
params.gamma = 1;
|
|
|
|
else if( params.gamma <= 0 )
|
|
|
|
CV_ERROR( CV_StsOutOfRange, "gamma parameter of the kernel must be positive" );
|
|
|
|
|
|
|
|
if( kernel_type != SIGMOID && kernel_type != POLY )
|
|
|
|
params.coef0 = 0;
|
|
|
|
else if( params.coef0 < 0 )
|
|
|
|
CV_ERROR( CV_StsOutOfRange, "The kernel parameter <coef0> must be positive or zero" );
|
|
|
|
|
|
|
|
if( kernel_type != POLY )
|
|
|
|
params.degree = 0;
|
|
|
|
else if( params.degree <= 0 )
|
|
|
|
CV_ERROR( CV_StsOutOfRange, "The kernel parameter <degree> must be positive" );
|
|
|
|
|
|
|
|
if( svm_type != C_SVC && svm_type != NU_SVC &&
|
|
|
|
svm_type != ONE_CLASS && svm_type != EPS_SVR &&
|
|
|
|
svm_type != NU_SVR )
|
|
|
|
CV_ERROR( CV_StsBadArg, "Unknown/unsupported SVM type" );
|
|
|
|
|
|
|
|
if( svm_type == ONE_CLASS || svm_type == NU_SVC )
|
|
|
|
params.C = 0;
|
|
|
|
else if( params.C <= 0 )
|
|
|
|
CV_ERROR( CV_StsOutOfRange, "The parameter C must be positive" );
|
|
|
|
|
|
|
|
if( svm_type == C_SVC || svm_type == EPS_SVR )
|
|
|
|
params.nu = 0;
|
|
|
|
else if( params.nu <= 0 || params.nu >= 1 )
|
|
|
|
CV_ERROR( CV_StsOutOfRange, "The parameter nu must be between 0 and 1" );
|
|
|
|
|
|
|
|
if( svm_type != EPS_SVR )
|
|
|
|
params.p = 0;
|
|
|
|
else if( params.p <= 0 )
|
|
|
|
CV_ERROR( CV_StsOutOfRange, "The parameter p must be positive" );
|
|
|
|
|
|
|
|
if( svm_type != C_SVC )
|
|
|
|
params.class_weights = 0;
|
|
|
|
|
|
|
|
params.term_crit = cvCheckTermCriteria( params.term_crit, DBL_EPSILON, INT_MAX );
|
|
|
|
params.term_crit.epsilon = MAX( params.term_crit.epsilon, DBL_EPSILON );
|
|
|
|
ok = true;
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVM::create_kernel()
|
|
|
|
{
|
|
|
|
kernel = new CvSVMKernel(¶ms,0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVM::create_solver( )
|
|
|
|
{
|
|
|
|
solver = new CvSVMSolver;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// switching function
|
|
|
|
bool CvSVM::train1( int sample_count, int var_count, const float** samples,
|
|
|
|
const void* _responses, double Cp, double Cn,
|
|
|
|
CvMemStorage* _storage, double* alpha, double& rho )
|
|
|
|
{
|
|
|
|
bool ok = false;
|
|
|
|
|
|
|
|
//CV_FUNCNAME( "CvSVM::train1" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
CvSVMSolutionInfo si;
|
|
|
|
int svm_type = params.svm_type;
|
|
|
|
|
|
|
|
si.rho = 0;
|
|
|
|
|
|
|
|
ok = svm_type == C_SVC ? solver->solve_c_svc( sample_count, var_count, samples, (schar*)_responses,
|
|
|
|
Cp, Cn, _storage, kernel, alpha, si ) :
|
|
|
|
svm_type == NU_SVC ? solver->solve_nu_svc( sample_count, var_count, samples, (schar*)_responses,
|
|
|
|
_storage, kernel, alpha, si ) :
|
|
|
|
svm_type == ONE_CLASS ? solver->solve_one_class( sample_count, var_count, samples,
|
|
|
|
_storage, kernel, alpha, si ) :
|
|
|
|
svm_type == EPS_SVR ? solver->solve_eps_svr( sample_count, var_count, samples, (float*)_responses,
|
|
|
|
_storage, kernel, alpha, si ) :
|
|
|
|
svm_type == NU_SVR ? solver->solve_nu_svr( sample_count, var_count, samples, (float*)_responses,
|
|
|
|
_storage, kernel, alpha, si ) : false;
|
|
|
|
|
|
|
|
rho = si.rho;
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CvSVM::do_train( int svm_type, int sample_count, int var_count, const float** samples,
|
|
|
|
const CvMat* responses, CvMemStorage* temp_storage, double* alpha )
|
|
|
|
{
|
|
|
|
bool ok = false;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvSVM::do_train" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
CvSVMDecisionFunc* df = 0;
|
|
|
|
const int sample_size = var_count*sizeof(samples[0][0]);
|
|
|
|
int i, j, k;
|
|
|
|
|
|
|
|
cvClearMemStorage( storage );
|
|
|
|
|
|
|
|
if( svm_type == ONE_CLASS || svm_type == EPS_SVR || svm_type == NU_SVR )
|
|
|
|
{
|
|
|
|
int sv_count = 0;
|
|
|
|
|
|
|
|
CV_CALL( decision_func = df =
|
|
|
|
(CvSVMDecisionFunc*)cvAlloc( sizeof(df[0]) ));
|
|
|
|
|
|
|
|
df->rho = 0;
|
|
|
|
if( !train1( sample_count, var_count, samples, svm_type == ONE_CLASS ? 0 :
|
|
|
|
responses->data.i, 0, 0, temp_storage, alpha, df->rho ))
|
|
|
|
EXIT;
|
|
|
|
|
|
|
|
for( i = 0; i < sample_count; i++ )
|
|
|
|
sv_count += fabs(alpha[i]) > 0;
|
|
|
|
|
|
|
|
sv_total = df->sv_count = sv_count;
|
|
|
|
CV_CALL( df->alpha = (double*)cvMemStorageAlloc( storage, sv_count*sizeof(df->alpha[0])) );
|
|
|
|
CV_CALL( sv = (float**)cvMemStorageAlloc( storage, sv_count*sizeof(sv[0])));
|
|
|
|
|
|
|
|
for( i = k = 0; i < sample_count; i++ )
|
|
|
|
{
|
|
|
|
if( fabs(alpha[i]) > 0 )
|
|
|
|
{
|
|
|
|
CV_CALL( sv[k] = (float*)cvMemStorageAlloc( storage, sample_size ));
|
|
|
|
memcpy( sv[k], samples[i], sample_size );
|
|
|
|
df->alpha[k++] = alpha[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int class_count = class_labels->cols;
|
|
|
|
int* sv_tab = 0;
|
|
|
|
const float** temp_samples = 0;
|
|
|
|
int* class_ranges = 0;
|
|
|
|
schar* temp_y = 0;
|
|
|
|
assert( svm_type == CvSVM::C_SVC || svm_type == CvSVM::NU_SVC );
|
|
|
|
|
|
|
|
if( svm_type == CvSVM::C_SVC && params.class_weights )
|
|
|
|
{
|
|
|
|
const CvMat* cw = params.class_weights;
|
|
|
|
|
|
|
|
if( !CV_IS_MAT(cw) || (cw->cols != 1 && cw->rows != 1) ||
|
|
|
|
cw->rows + cw->cols - 1 != class_count ||
|
|
|
|
(CV_MAT_TYPE(cw->type) != CV_32FC1 && CV_MAT_TYPE(cw->type) != CV_64FC1) )
|
|
|
|
CV_ERROR( CV_StsBadArg, "params.class_weights must be 1d floating-point vector "
|
|
|
|
"containing as many elements as the number of classes" );
|
|
|
|
|
|
|
|
CV_CALL( class_weights = cvCreateMat( cw->rows, cw->cols, CV_64F ));
|
|
|
|
CV_CALL( cvConvert( cw, class_weights ));
|
|
|
|
CV_CALL( cvScale( class_weights, class_weights, params.C ));
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_CALL( decision_func = df = (CvSVMDecisionFunc*)cvAlloc(
|
|
|
|
(class_count*(class_count-1)/2)*sizeof(df[0])));
|
|
|
|
|
|
|
|
CV_CALL( sv_tab = (int*)cvMemStorageAlloc( temp_storage, sample_count*sizeof(sv_tab[0]) ));
|
|
|
|
memset( sv_tab, 0, sample_count*sizeof(sv_tab[0]) );
|
|
|
|
CV_CALL( class_ranges = (int*)cvMemStorageAlloc( temp_storage,
|
|
|
|
(class_count + 1)*sizeof(class_ranges[0])));
|
|
|
|
CV_CALL( temp_samples = (const float**)cvMemStorageAlloc( temp_storage,
|
|
|
|
sample_count*sizeof(temp_samples[0])));
|
|
|
|
CV_CALL( temp_y = (schar*)cvMemStorageAlloc( temp_storage, sample_count));
|
|
|
|
|
|
|
|
class_ranges[class_count] = 0;
|
|
|
|
cvSortSamplesByClasses( samples, responses, class_ranges, 0 );
|
|
|
|
//check that while cross-validation there were the samples from all the classes
|
|
|
|
if( class_ranges[class_count] <= 0 )
|
|
|
|
CV_ERROR( CV_StsBadArg, "While cross-validation one or more of the classes have "
|
|
|
|
"been fell out of the sample. Try to enlarge <CvSVMParams::k_fold>" );
|
|
|
|
|
|
|
|
if( svm_type == NU_SVC )
|
|
|
|
{
|
|
|
|
// check if nu is feasible
|
|
|
|
for(i = 0; i < class_count; i++ )
|
|
|
|
{
|
|
|
|
int ci = class_ranges[i+1] - class_ranges[i];
|
|
|
|
for( j = i+1; j< class_count; j++ )
|
|
|
|
{
|
|
|
|
int cj = class_ranges[j+1] - class_ranges[j];
|
|
|
|
if( params.nu*(ci + cj)*0.5 > MIN( ci, cj ) )
|
|
|
|
{
|
|
|
|
// !!!TODO!!! add some diagnostic
|
|
|
|
EXIT; // exit immediately; will release the model and return NULL pointer
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// train n*(n-1)/2 classifiers
|
|
|
|
for( i = 0; i < class_count; i++ )
|
|
|
|
{
|
|
|
|
for( j = i+1; j < class_count; j++, df++ )
|
|
|
|
{
|
|
|
|
int si = class_ranges[i], ci = class_ranges[i+1] - si;
|
|
|
|
int sj = class_ranges[j], cj = class_ranges[j+1] - sj;
|
|
|
|
double Cp = params.C, Cn = Cp;
|
|
|
|
int k1 = 0, sv_count = 0;
|
|
|
|
|
|
|
|
for( k = 0; k < ci; k++ )
|
|
|
|
{
|
|
|
|
temp_samples[k] = samples[si + k];
|
|
|
|
temp_y[k] = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( k = 0; k < cj; k++ )
|
|
|
|
{
|
|
|
|
temp_samples[ci + k] = samples[sj + k];
|
|
|
|
temp_y[ci + k] = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( class_weights )
|
|
|
|
{
|
|
|
|
Cp = class_weights->data.db[i];
|
|
|
|
Cn = class_weights->data.db[j];
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !train1( ci + cj, var_count, temp_samples, temp_y,
|
|
|
|
Cp, Cn, temp_storage, alpha, df->rho ))
|
|
|
|
EXIT;
|
|
|
|
|
|
|
|
for( k = 0; k < ci + cj; k++ )
|
|
|
|
sv_count += fabs(alpha[k]) > 0;
|
|
|
|
|
|
|
|
df->sv_count = sv_count;
|
|
|
|
|
|
|
|
CV_CALL( df->alpha = (double*)cvMemStorageAlloc( temp_storage,
|
|
|
|
sv_count*sizeof(df->alpha[0])));
|
|
|
|
CV_CALL( df->sv_index = (int*)cvMemStorageAlloc( temp_storage,
|
|
|
|
sv_count*sizeof(df->sv_index[0])));
|
|
|
|
|
|
|
|
for( k = 0; k < ci; k++ )
|
|
|
|
{
|
|
|
|
if( fabs(alpha[k]) > 0 )
|
|
|
|
{
|
|
|
|
sv_tab[si + k] = 1;
|
|
|
|
df->sv_index[k1] = si + k;
|
|
|
|
df->alpha[k1++] = alpha[k];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for( k = 0; k < cj; k++ )
|
|
|
|
{
|
|
|
|
if( fabs(alpha[ci + k]) > 0 )
|
|
|
|
{
|
|
|
|
sv_tab[sj + k] = 1;
|
|
|
|
df->sv_index[k1] = sj + k;
|
|
|
|
df->alpha[k1++] = alpha[ci + k];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// allocate support vectors and initialize sv_tab
|
|
|
|
for( i = 0, k = 0; i < sample_count; i++ )
|
|
|
|
{
|
|
|
|
if( sv_tab[i] )
|
|
|
|
sv_tab[i] = ++k;
|
|
|
|
}
|
|
|
|
|
|
|
|
sv_total = k;
|
|
|
|
CV_CALL( sv = (float**)cvMemStorageAlloc( storage, sv_total*sizeof(sv[0])));
|
|
|
|
|
|
|
|
for( i = 0, k = 0; i < sample_count; i++ )
|
|
|
|
{
|
|
|
|
if( sv_tab[i] )
|
|
|
|
{
|
|
|
|
CV_CALL( sv[k] = (float*)cvMemStorageAlloc( storage, sample_size ));
|
|
|
|
memcpy( sv[k], samples[i], sample_size );
|
|
|
|
k++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
df = (CvSVMDecisionFunc*)decision_func;
|
|
|
|
|
|
|
|
// set sv pointers
|
|
|
|
for( i = 0; i < class_count; i++ )
|
|
|
|
{
|
|
|
|
for( j = i+1; j < class_count; j++, df++ )
|
|
|
|
{
|
|
|
|
for( k = 0; k < df->sv_count; k++ )
|
|
|
|
{
|
|
|
|
df->sv_index[k] = sv_tab[df->sv_index[k]]-1;
|
|
|
|
assert( (unsigned)df->sv_index[k] < (unsigned)sv_total );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
optimize_linear_svm();
|
|
|
|
ok = true;
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVM::optimize_linear_svm()
|
|
|
|
{
|
|
|
|
// we optimize only linear SVM: compress all the support vectors into one.
|
|
|
|
if( params.kernel_type != LINEAR )
|
|
|
|
return;
|
|
|
|
|
|
|
|
int class_count = class_labels ? class_labels->cols :
|
|
|
|
params.svm_type == CvSVM::ONE_CLASS ? 1 : 0;
|
|
|
|
|
|
|
|
int i, df_count = class_count > 1 ? class_count*(class_count-1)/2 : 1;
|
|
|
|
CvSVMDecisionFunc* df = decision_func;
|
|
|
|
|
|
|
|
for( i = 0; i < df_count; i++ )
|
|
|
|
{
|
|
|
|
int sv_count = df[i].sv_count;
|
|
|
|
if( sv_count != 1 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// if every decision functions uses a single support vector;
|
|
|
|
// it's already compressed. skip it then.
|
|
|
|
if( i == df_count )
|
|
|
|
return;
|
|
|
|
|
|
|
|
int var_count = get_var_count();
|
|
|
|
cv::AutoBuffer<double> vbuf(var_count);
|
|
|
|
double* v = vbuf;
|
|
|
|
float** new_sv = (float**)cvMemStorageAlloc(storage, df_count*sizeof(new_sv[0]));
|
|
|
|
|
|
|
|
for( i = 0; i < df_count; i++ )
|
|
|
|
{
|
|
|
|
new_sv[i] = (float*)cvMemStorageAlloc(storage, var_count*sizeof(new_sv[i][0]));
|
|
|
|
float* dst = new_sv[i];
|
|
|
|
memset(v, 0, var_count*sizeof(v[0]));
|
|
|
|
int j, k, sv_count = df[i].sv_count;
|
|
|
|
for( j = 0; j < sv_count; j++ )
|
|
|
|
{
|
|
|
|
const float* src = class_count > 1 && df[i].sv_index ? sv[df[i].sv_index[j]] : sv[j];
|
|
|
|
double a = df[i].alpha[j];
|
|
|
|
for( k = 0; k < var_count; k++ )
|
|
|
|
v[k] += src[k]*a;
|
|
|
|
}
|
|
|
|
for( k = 0; k < var_count; k++ )
|
|
|
|
dst[k] = (float)v[k];
|
|
|
|
df[i].sv_count = 1;
|
|
|
|
df[i].alpha[0] = 1.;
|
|
|
|
if( class_count > 1 && df[i].sv_index )
|
|
|
|
df[i].sv_index[0] = i;
|
|
|
|
}
|
|
|
|
|
|
|
|
sv = new_sv;
|
|
|
|
sv_total = df_count;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CvSVM::train( const CvMat* _train_data, const CvMat* _responses,
|
|
|
|
const CvMat* _var_idx, const CvMat* _sample_idx, CvSVMParams _params )
|
|
|
|
{
|
|
|
|
bool ok = false;
|
|
|
|
CvMat* responses = 0;
|
|
|
|
CvMemStorage* temp_storage = 0;
|
|
|
|
const float** samples = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvSVM::train" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int svm_type, sample_count, var_count, sample_size;
|
|
|
|
int block_size = 1 << 16;
|
|
|
|
double* alpha;
|
|
|
|
|
|
|
|
clear();
|
|
|
|
CV_CALL( set_params( _params ));
|
|
|
|
|
|
|
|
svm_type = _params.svm_type;
|
|
|
|
|
|
|
|
/* Prepare training data and related parameters */
|
|
|
|
CV_CALL( cvPrepareTrainData( "CvSVM::train", _train_data, CV_ROW_SAMPLE,
|
|
|
|
svm_type != CvSVM::ONE_CLASS ? _responses : 0,
|
|
|
|
svm_type == CvSVM::C_SVC ||
|
|
|
|
svm_type == CvSVM::NU_SVC ? CV_VAR_CATEGORICAL :
|
|
|
|
CV_VAR_ORDERED, _var_idx, _sample_idx,
|
|
|
|
false, &samples, &sample_count, &var_count, &var_all,
|
|
|
|
&responses, &class_labels, &var_idx ));
|
|
|
|
|
|
|
|
|
|
|
|
sample_size = var_count*sizeof(samples[0][0]);
|
|
|
|
|
|
|
|
// make the storage block size large enough to fit all
|
|
|
|
// the temporary vectors and output support vectors.
|
|
|
|
block_size = MAX( block_size, sample_count*(int)sizeof(CvSVMKernelRow));
|
|
|
|
block_size = MAX( block_size, sample_count*2*(int)sizeof(double) + 1024 );
|
|
|
|
block_size = MAX( block_size, sample_size*2 + 1024 );
|
|
|
|
|
|
|
|
CV_CALL( storage = cvCreateMemStorage(block_size + sizeof(CvMemBlock) + sizeof(CvSeqBlock)));
|
|
|
|
CV_CALL( temp_storage = cvCreateChildMemStorage(storage));
|
|
|
|
CV_CALL( alpha = (double*)cvMemStorageAlloc(temp_storage, sample_count*sizeof(double)));
|
|
|
|
|
|
|
|
create_kernel();
|
|
|
|
create_solver();
|
|
|
|
|
|
|
|
if( !do_train( svm_type, sample_count, var_count, samples, responses, temp_storage, alpha ))
|
|
|
|
EXIT;
|
|
|
|
|
|
|
|
ok = true; // model has been trained succesfully
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
delete solver;
|
|
|
|
solver = 0;
|
|
|
|
cvReleaseMemStorage( &temp_storage );
|
|
|
|
cvReleaseMat( &responses );
|
|
|
|
cvFree( &samples );
|
|
|
|
|
|
|
|
if( cvGetErrStatus() < 0 || !ok )
|
|
|
|
clear();
|
|
|
|
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct indexedratio
|
|
|
|
{
|
|
|
|
double val;
|
|
|
|
int ind;
|
|
|
|
int count_smallest, count_biggest;
|
|
|
|
void eval() { val = (double) count_smallest/(count_smallest+count_biggest); }
|
|
|
|
};
|
|
|
|
|
|
|
|
static int CV_CDECL
|
|
|
|
icvCmpIndexedratio( const void* a, const void* b )
|
|
|
|
{
|
|
|
|
return ((const indexedratio*)a)->val < ((const indexedratio*)b)->val ? -1
|
|
|
|
: ((const indexedratio*)a)->val > ((const indexedratio*)b)->val ? 1
|
|
|
|
: 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CvSVM::train_auto( const CvMat* _train_data, const CvMat* _responses,
|
|
|
|
const CvMat* _var_idx, const CvMat* _sample_idx, CvSVMParams _params, int k_fold,
|
|
|
|
CvParamGrid C_grid, CvParamGrid gamma_grid, CvParamGrid p_grid,
|
|
|
|
CvParamGrid nu_grid, CvParamGrid coef_grid, CvParamGrid degree_grid,
|
|
|
|
bool balanced)
|
|
|
|
{
|
|
|
|
bool ok = false;
|
|
|
|
CvMat* responses = 0;
|
|
|
|
CvMat* responses_local = 0;
|
|
|
|
CvMemStorage* temp_storage = 0;
|
|
|
|
const float** samples = 0;
|
|
|
|
const float** samples_local = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvSVM::train_auto" );
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int svm_type, sample_count, var_count, sample_size;
|
|
|
|
int block_size = 1 << 16;
|
|
|
|
double* alpha;
|
|
|
|
RNG* rng = &theRNG();
|
|
|
|
|
|
|
|
// all steps are logarithmic and must be > 1
|
|
|
|
double degree_step = 10, g_step = 10, coef_step = 10, C_step = 10, nu_step = 10, p_step = 10;
|
|
|
|
double gamma = 0, curr_c = 0, degree = 0, coef = 0, p = 0, nu = 0;
|
|
|
|
double best_degree = 0, best_gamma = 0, best_coef = 0, best_C = 0, best_nu = 0, best_p = 0;
|
|
|
|
float min_error = FLT_MAX, error;
|
|
|
|
|
|
|
|
if( _params.svm_type == CvSVM::ONE_CLASS )
|
|
|
|
{
|
|
|
|
if(!train( _train_data, _responses, _var_idx, _sample_idx, _params ))
|
|
|
|
EXIT;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
clear();
|
|
|
|
|
|
|
|
if( k_fold < 2 )
|
|
|
|
CV_ERROR( CV_StsBadArg, "Parameter <k_fold> must be > 1" );
|
|
|
|
|
|
|
|
CV_CALL(set_params( _params ));
|
|
|
|
svm_type = _params.svm_type;
|
|
|
|
|
|
|
|
// All the parameters except, possibly, <coef0> are positive.
|
|
|
|
// <coef0> is nonnegative
|
|
|
|
if( C_grid.step <= 1 )
|
|
|
|
{
|
|
|
|
C_grid.min_val = C_grid.max_val = params.C;
|
|
|
|
C_grid.step = 10;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_CALL(C_grid.check());
|
|
|
|
|
|
|
|
if( gamma_grid.step <= 1 )
|
|
|
|
{
|
|
|
|
gamma_grid.min_val = gamma_grid.max_val = params.gamma;
|
|
|
|
gamma_grid.step = 10;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_CALL(gamma_grid.check());
|
|
|
|
|
|
|
|
if( p_grid.step <= 1 )
|
|
|
|
{
|
|
|
|
p_grid.min_val = p_grid.max_val = params.p;
|
|
|
|
p_grid.step = 10;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_CALL(p_grid.check());
|
|
|
|
|
|
|
|
if( nu_grid.step <= 1 )
|
|
|
|
{
|
|
|
|
nu_grid.min_val = nu_grid.max_val = params.nu;
|
|
|
|
nu_grid.step = 10;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_CALL(nu_grid.check());
|
|
|
|
|
|
|
|
if( coef_grid.step <= 1 )
|
|
|
|
{
|
|
|
|
coef_grid.min_val = coef_grid.max_val = params.coef0;
|
|
|
|
coef_grid.step = 10;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_CALL(coef_grid.check());
|
|
|
|
|
|
|
|
if( degree_grid.step <= 1 )
|
|
|
|
{
|
|
|
|
degree_grid.min_val = degree_grid.max_val = params.degree;
|
|
|
|
degree_grid.step = 10;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_CALL(degree_grid.check());
|
|
|
|
|
|
|
|
// these parameters are not used:
|
|
|
|
if( params.kernel_type != CvSVM::POLY )
|
|
|
|
degree_grid.min_val = degree_grid.max_val = params.degree;
|
|
|
|
if( params.kernel_type == CvSVM::LINEAR )
|
|
|
|
gamma_grid.min_val = gamma_grid.max_val = params.gamma;
|
|
|
|
if( params.kernel_type != CvSVM::POLY && params.kernel_type != CvSVM::SIGMOID )
|
|
|
|
coef_grid.min_val = coef_grid.max_val = params.coef0;
|
|
|
|
if( svm_type == CvSVM::NU_SVC || svm_type == CvSVM::ONE_CLASS )
|
|
|
|
C_grid.min_val = C_grid.max_val = params.C;
|
|
|
|
if( svm_type == CvSVM::C_SVC || svm_type == CvSVM::EPS_SVR )
|
|
|
|
nu_grid.min_val = nu_grid.max_val = params.nu;
|
|
|
|
if( svm_type != CvSVM::EPS_SVR )
|
|
|
|
p_grid.min_val = p_grid.max_val = params.p;
|
|
|
|
|
|
|
|
CV_ASSERT( g_step > 1 && degree_step > 1 && coef_step > 1);
|
|
|
|
CV_ASSERT( p_step > 1 && C_step > 1 && nu_step > 1 );
|
|
|
|
|
|
|
|
/* Prepare training data and related parameters */
|
|
|
|
CV_CALL(cvPrepareTrainData( "CvSVM::train_auto", _train_data, CV_ROW_SAMPLE,
|
|
|
|
svm_type != CvSVM::ONE_CLASS ? _responses : 0,
|
|
|
|
svm_type == CvSVM::C_SVC ||
|
|
|
|
svm_type == CvSVM::NU_SVC ? CV_VAR_CATEGORICAL :
|
|
|
|
CV_VAR_ORDERED, _var_idx, _sample_idx,
|
|
|
|
false, &samples, &sample_count, &var_count, &var_all,
|
|
|
|
&responses, &class_labels, &var_idx ));
|
|
|
|
|
|
|
|
sample_size = var_count*sizeof(samples[0][0]);
|
|
|
|
|
|
|
|
// make the storage block size large enough to fit all
|
|
|
|
// the temporary vectors and output support vectors.
|
|
|
|
block_size = MAX( block_size, sample_count*(int)sizeof(CvSVMKernelRow));
|
|
|
|
block_size = MAX( block_size, sample_count*2*(int)sizeof(double) + 1024 );
|
|
|
|
block_size = MAX( block_size, sample_size*2 + 1024 );
|
|
|
|
|
|
|
|
CV_CALL( storage = cvCreateMemStorage(block_size + sizeof(CvMemBlock) + sizeof(CvSeqBlock)));
|
|
|
|
CV_CALL(temp_storage = cvCreateChildMemStorage(storage));
|
|
|
|
CV_CALL(alpha = (double*)cvMemStorageAlloc(temp_storage, sample_count*sizeof(double)));
|
|
|
|
|
|
|
|
create_kernel();
|
|
|
|
create_solver();
|
|
|
|
|
|
|
|
{
|
|
|
|
const int testset_size = sample_count/k_fold;
|
|
|
|
const int trainset_size = sample_count - testset_size;
|
|
|
|
const int last_testset_size = sample_count - testset_size*(k_fold-1);
|
|
|
|
const int last_trainset_size = sample_count - last_testset_size;
|
|
|
|
const bool is_regression = (svm_type == EPS_SVR) || (svm_type == NU_SVR);
|
|
|
|
|
|
|
|
size_t resp_elem_size = CV_ELEM_SIZE(responses->type);
|
|
|
|
size_t size = 2*last_trainset_size*sizeof(samples[0]);
|
|
|
|
|
|
|
|
samples_local = (const float**) cvAlloc( size );
|
|
|
|
memset( samples_local, 0, size );
|
|
|
|
|
|
|
|
responses_local = cvCreateMat( 1, trainset_size, CV_MAT_TYPE(responses->type) );
|
|
|
|
cvZero( responses_local );
|
|
|
|
|
|
|
|
// randomly permute samples and responses
|
|
|
|
for(int i = 0; i < sample_count; i++ )
|
|
|
|
{
|
|
|
|
int i1 = (*rng)(sample_count);
|
|
|
|
int i2 = (*rng)(sample_count);
|
|
|
|
const float* temp;
|
|
|
|
float t;
|
|
|
|
int y;
|
|
|
|
|
|
|
|
CV_SWAP( samples[i1], samples[i2], temp );
|
|
|
|
if( is_regression )
|
|
|
|
CV_SWAP( responses->data.fl[i1], responses->data.fl[i2], t );
|
|
|
|
else
|
|
|
|
CV_SWAP( responses->data.i[i1], responses->data.i[i2], y );
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!is_regression && class_labels->cols==2 && balanced)
|
|
|
|
{
|
|
|
|
// count class samples
|
|
|
|
int num_0=0,num_1=0;
|
|
|
|
for (int i=0; i<sample_count; ++i)
|
|
|
|
{
|
|
|
|
if (responses->data.i[i]==class_labels->data.i[0])
|
|
|
|
++num_0;
|
|
|
|
else
|
|
|
|
++num_1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int label_smallest_class;
|
|
|
|
int label_biggest_class;
|
|
|
|
if (num_0 < num_1)
|
|
|
|
{
|
|
|
|
label_biggest_class = class_labels->data.i[1];
|
|
|
|
label_smallest_class = class_labels->data.i[0];
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
label_biggest_class = class_labels->data.i[0];
|
|
|
|
label_smallest_class = class_labels->data.i[1];
|
|
|
|
int y;
|
|
|
|
CV_SWAP(num_0,num_1,y);
|
|
|
|
}
|
|
|
|
const double class_ratio = (double) num_0/sample_count;
|
|
|
|
// calculate class ratio of each fold
|
|
|
|
indexedratio *ratios=0;
|
|
|
|
ratios = (indexedratio*) cvAlloc(k_fold*sizeof(*ratios));
|
|
|
|
for (int k=0, i_begin=0; k<k_fold; ++k, i_begin+=testset_size)
|
|
|
|
{
|
|
|
|
int count0=0;
|
|
|
|
int count1=0;
|
|
|
|
int i_end = i_begin + (k<k_fold-1 ? testset_size : last_testset_size);
|
|
|
|
for (int i=i_begin; i<i_end; ++i)
|
|
|
|
{
|
|
|
|
if (responses->data.i[i]==label_smallest_class)
|
|
|
|
++count0;
|
|
|
|
else
|
|
|
|
++count1;
|
|
|
|
}
|
|
|
|
ratios[k].ind = k;
|
|
|
|
ratios[k].count_smallest = count0;
|
|
|
|
ratios[k].count_biggest = count1;
|
|
|
|
ratios[k].eval();
|
|
|
|
}
|
|
|
|
// initial distance
|
|
|
|
qsort(ratios, k_fold, sizeof(ratios[0]), icvCmpIndexedratio);
|
|
|
|
double old_dist = 0.0;
|
|
|
|
for (int k=0; k<k_fold; ++k)
|
|
|
|
old_dist += cv::abs(ratios[k].val-class_ratio);
|
|
|
|
double new_dist = 1.0;
|
|
|
|
// iterate to make the folds more balanced
|
|
|
|
while (new_dist > 0.0)
|
|
|
|
{
|
|
|
|
if (ratios[0].count_biggest==0 || ratios[k_fold-1].count_smallest==0)
|
|
|
|
break; // we are not able to swap samples anymore
|
|
|
|
// what if we swap the samples, calculate the new distance
|
|
|
|
ratios[0].count_smallest++;
|
|
|
|
ratios[0].count_biggest--;
|
|
|
|
ratios[0].eval();
|
|
|
|
ratios[k_fold-1].count_smallest--;
|
|
|
|
ratios[k_fold-1].count_biggest++;
|
|
|
|
ratios[k_fold-1].eval();
|
|
|
|
qsort(ratios, k_fold, sizeof(ratios[0]), icvCmpIndexedratio);
|
|
|
|
new_dist = 0.0;
|
|
|
|
for (int k=0; k<k_fold; ++k)
|
|
|
|
new_dist += cv::abs(ratios[k].val-class_ratio);
|
|
|
|
if (new_dist < old_dist)
|
|
|
|
{
|
|
|
|
// swapping really improves, so swap the samples
|
|
|
|
// index of the biggest_class sample from the minimum ratio fold
|
|
|
|
int i1 = ratios[0].ind * testset_size;
|
|
|
|
for ( ; i1<sample_count; ++i1)
|
|
|
|
{
|
|
|
|
if (responses->data.i[i1]==label_biggest_class)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// index of the smallest_class sample from the maximum ratio fold
|
|
|
|
int i2 = ratios[k_fold-1].ind * testset_size;
|
|
|
|
for ( ; i2<sample_count; ++i2)
|
|
|
|
{
|
|
|
|
if (responses->data.i[i2]==label_smallest_class)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
// swap
|
|
|
|
const float* temp;
|
|
|
|
int y;
|
|
|
|
CV_SWAP( samples[i1], samples[i2], temp );
|
|
|
|
CV_SWAP( responses->data.i[i1], responses->data.i[i2], y );
|
|
|
|
old_dist = new_dist;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
break; // does not improve, so break the loop
|
|
|
|
}
|
|
|
|
cvFree(&ratios);
|
|
|
|
}
|
|
|
|
|
|
|
|
int* cls_lbls = class_labels ? class_labels->data.i : 0;
|
|
|
|
curr_c = C_grid.min_val;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
params.C = curr_c;
|
|
|
|
gamma = gamma_grid.min_val;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
params.gamma = gamma;
|
|
|
|
p = p_grid.min_val;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
params.p = p;
|
|
|
|
nu = nu_grid.min_val;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
params.nu = nu;
|
|
|
|
coef = coef_grid.min_val;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
params.coef0 = coef;
|
|
|
|
degree = degree_grid.min_val;
|
|
|
|
do
|
|
|
|
{
|
|
|
|
params.degree = degree;
|
|
|
|
|
|
|
|
float** test_samples_ptr = (float**)samples;
|
|
|
|
uchar* true_resp = responses->data.ptr;
|
|
|
|
int test_size = testset_size;
|
|
|
|
int train_size = trainset_size;
|
|
|
|
|
|
|
|
error = 0;
|
|
|
|
for(int k = 0; k < k_fold; k++ )
|
|
|
|
{
|
|
|
|
memcpy( samples_local, samples, sizeof(samples[0])*test_size*k );
|
|
|
|
memcpy( samples_local + test_size*k, test_samples_ptr + test_size,
|
|
|
|
sizeof(samples[0])*(sample_count - testset_size*(k+1)) );
|
|
|
|
|
|
|
|
memcpy( responses_local->data.ptr, responses->data.ptr, resp_elem_size*test_size*k );
|
|
|
|
memcpy( responses_local->data.ptr + resp_elem_size*test_size*k,
|
|
|
|
true_resp + resp_elem_size*test_size,
|
|
|
|
resp_elem_size*(sample_count - testset_size*(k+1)) );
|
|
|
|
|
|
|
|
if( k == k_fold - 1 )
|
|
|
|
{
|
|
|
|
test_size = last_testset_size;
|
|
|
|
train_size = last_trainset_size;
|
|
|
|
responses_local->cols = last_trainset_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Train SVM on <train_size> samples
|
|
|
|
if( !do_train( svm_type, train_size, var_count,
|
|
|
|
(const float**)samples_local, responses_local, temp_storage, alpha ) )
|
|
|
|
EXIT;
|
|
|
|
|
|
|
|
// Compute test set error on <test_size> samples
|
|
|
|
for(int i = 0; i < test_size; i++, true_resp += resp_elem_size, test_samples_ptr++ )
|
|
|
|
{
|
|
|
|
float resp = predict( *test_samples_ptr, var_count );
|
|
|
|
error += is_regression ? powf( resp - *(float*)true_resp, 2 )
|
|
|
|
: ((int)resp != cls_lbls[*(int*)true_resp]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( min_error > error )
|
|
|
|
{
|
|
|
|
min_error = error;
|
|
|
|
best_degree = degree;
|
|
|
|
best_gamma = gamma;
|
|
|
|
best_coef = coef;
|
|
|
|
best_C = curr_c;
|
|
|
|
best_nu = nu;
|
|
|
|
best_p = p;
|
|
|
|
}
|
|
|
|
degree *= degree_grid.step;
|
|
|
|
}
|
|
|
|
while( degree < degree_grid.max_val );
|
|
|
|
coef *= coef_grid.step;
|
|
|
|
}
|
|
|
|
while( coef < coef_grid.max_val );
|
|
|
|
nu *= nu_grid.step;
|
|
|
|
}
|
|
|
|
while( nu < nu_grid.max_val );
|
|
|
|
p *= p_grid.step;
|
|
|
|
}
|
|
|
|
while( p < p_grid.max_val );
|
|
|
|
gamma *= gamma_grid.step;
|
|
|
|
}
|
|
|
|
while( gamma < gamma_grid.max_val );
|
|
|
|
curr_c *= C_grid.step;
|
|
|
|
}
|
|
|
|
while( curr_c < C_grid.max_val );
|
|
|
|
}
|
|
|
|
|
|
|
|
min_error /= (float) sample_count;
|
|
|
|
|
|
|
|
params.C = best_C;
|
|
|
|
params.nu = best_nu;
|
|
|
|
params.p = best_p;
|
|
|
|
params.gamma = best_gamma;
|
|
|
|
params.degree = best_degree;
|
|
|
|
params.coef0 = best_coef;
|
|
|
|
|
|
|
|
CV_CALL(ok = do_train( svm_type, sample_count, var_count, samples, responses, temp_storage, alpha ));
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
delete solver;
|
|
|
|
solver = 0;
|
|
|
|
cvReleaseMemStorage( &temp_storage );
|
|
|
|
cvReleaseMat( &responses );
|
|
|
|
cvReleaseMat( &responses_local );
|
|
|
|
cvFree( &samples );
|
|
|
|
cvFree( &samples_local );
|
|
|
|
|
|
|
|
if( cvGetErrStatus() < 0 || !ok )
|
|
|
|
clear();
|
|
|
|
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
float CvSVM::predict( const float* row_sample, int row_len, bool returnDFVal ) const
|
|
|
|
{
|
|
|
|
assert( kernel );
|
|
|
|
assert( row_sample );
|
|
|
|
|
|
|
|
int var_count = get_var_count();
|
|
|
|
assert( row_len == var_count );
|
|
|
|
(void)row_len;
|
|
|
|
|
|
|
|
int class_count = class_labels ? class_labels->cols :
|
|
|
|
params.svm_type == ONE_CLASS ? 1 : 0;
|
|
|
|
|
|
|
|
float result = 0;
|
|
|
|
cv::AutoBuffer<float> _buffer(sv_total + (class_count+1)*2);
|
|
|
|
float* buffer = _buffer;
|
|
|
|
|
|
|
|
if( params.svm_type == EPS_SVR ||
|
|
|
|
params.svm_type == NU_SVR ||
|
|
|
|
params.svm_type == ONE_CLASS )
|
|
|
|
{
|
|
|
|
CvSVMDecisionFunc* df = (CvSVMDecisionFunc*)decision_func;
|
|
|
|
int i, sv_count = df->sv_count;
|
|
|
|
double sum = -df->rho;
|
|
|
|
|
|
|
|
kernel->calc( sv_count, var_count, (const float**)sv, row_sample, buffer );
|
|
|
|
for( i = 0; i < sv_count; i++ )
|
|
|
|
sum += buffer[i]*df->alpha[i];
|
|
|
|
|
|
|
|
result = params.svm_type == ONE_CLASS ? (float)(sum > 0) : (float)sum;
|
|
|
|
}
|
|
|
|
else if( params.svm_type == C_SVC ||
|
|
|
|
params.svm_type == NU_SVC )
|
|
|
|
{
|
|
|
|
CvSVMDecisionFunc* df = (CvSVMDecisionFunc*)decision_func;
|
|
|
|
int* vote = (int*)(buffer + sv_total);
|
|
|
|
int i, j, k;
|
|
|
|
|
|
|
|
memset( vote, 0, class_count*sizeof(vote[0]));
|
|
|
|
kernel->calc( sv_total, var_count, (const float**)sv, row_sample, buffer );
|
|
|
|
double sum = 0.;
|
|
|
|
|
|
|
|
for( i = 0; i < class_count; i++ )
|
|
|
|
{
|
|
|
|
for( j = i+1; j < class_count; j++, df++ )
|
|
|
|
{
|
|
|
|
sum = -df->rho;
|
|
|
|
int sv_count = df->sv_count;
|
|
|
|
for( k = 0; k < sv_count; k++ )
|
|
|
|
sum += df->alpha[k]*buffer[df->sv_index[k]];
|
|
|
|
|
|
|
|
vote[sum > 0 ? i : j]++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for( i = 1, k = 0; i < class_count; i++ )
|
|
|
|
{
|
|
|
|
if( vote[i] > vote[k] )
|
|
|
|
k = i;
|
|
|
|
}
|
|
|
|
result = returnDFVal && class_count == 2 ? (float)sum : (float)(class_labels->data.i[k]);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_Error( CV_StsBadArg, "INTERNAL ERROR: Unknown SVM type, "
|
|
|
|
"the SVM structure is probably corrupted" );
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
float CvSVM::predict( const CvMat* sample, bool returnDFVal ) const
|
|
|
|
{
|
|
|
|
float result = 0;
|
|
|
|
float* row_sample = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvSVM::predict" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int class_count;
|
|
|
|
|
|
|
|
if( !kernel )
|
|
|
|
CV_ERROR( CV_StsBadArg, "The SVM should be trained first" );
|
|
|
|
|
|
|
|
class_count = class_labels ? class_labels->cols :
|
|
|
|
params.svm_type == ONE_CLASS ? 1 : 0;
|
|
|
|
|
|
|
|
CV_CALL( cvPreparePredictData( sample, var_all, var_idx,
|
|
|
|
class_count, 0, &row_sample ));
|
|
|
|
result = predict( row_sample, get_var_count(), returnDFVal );
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
if( sample && (!CV_IS_MAT(sample) || sample->data.fl != row_sample) )
|
|
|
|
cvFree( &row_sample );
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct predict_body_svm {
|
|
|
|
predict_body_svm(const CvSVM* _pointer, float* _result, const CvMat* _samples, CvMat* _results)
|
|
|
|
{
|
|
|
|
pointer = _pointer;
|
|
|
|
result = _result;
|
|
|
|
samples = _samples;
|
|
|
|
results = _results;
|
|
|
|
}
|
|
|
|
|
|
|
|
const CvSVM* pointer;
|
|
|
|
float* result;
|
|
|
|
const CvMat* samples;
|
|
|
|
CvMat* results;
|
|
|
|
|
|
|
|
void operator()( const cv::BlockedRange& range ) const
|
|
|
|
{
|
|
|
|
for(int i = range.begin(); i < range.end(); i++ )
|
|
|
|
{
|
|
|
|
CvMat sample;
|
|
|
|
cvGetRow( samples, &sample, i );
|
|
|
|
int r = (int)pointer->predict(&sample);
|
|
|
|
if (results)
|
|
|
|
results->data.fl[i] = (float)r;
|
|
|
|
if (i == 0)
|
|
|
|
*result = (float)r;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
float CvSVM::predict(const CvMat* samples, CV_OUT CvMat* results) const
|
|
|
|
{
|
|
|
|
float result = 0;
|
|
|
|
cv::parallel_for(cv::BlockedRange(0, samples->rows),
|
|
|
|
predict_body_svm(this, &result, samples, results)
|
|
|
|
);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CvSVM::predict( cv::InputArray _samples, cv::OutputArray _results ) const
|
|
|
|
{
|
|
|
|
_results.create(_samples.size().height, 1, CV_32F);
|
|
|
|
CvMat samples = _samples.getMat(), results = _results.getMat();
|
|
|
|
predict(&samples, &results);
|
|
|
|
}
|
|
|
|
|
|
|
|
CvSVM::CvSVM( const Mat& _train_data, const Mat& _responses,
|
|
|
|
const Mat& _var_idx, const Mat& _sample_idx, CvSVMParams _params )
|
|
|
|
{
|
|
|
|
decision_func = 0;
|
|
|
|
class_labels = 0;
|
|
|
|
class_weights = 0;
|
|
|
|
storage = 0;
|
|
|
|
var_idx = 0;
|
|
|
|
kernel = 0;
|
|
|
|
solver = 0;
|
|
|
|
default_model_name = "my_svm";
|
|
|
|
|
|
|
|
train( _train_data, _responses, _var_idx, _sample_idx, _params );
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CvSVM::train( const Mat& _train_data, const Mat& _responses,
|
|
|
|
const Mat& _var_idx, const Mat& _sample_idx, CvSVMParams _params )
|
|
|
|
{
|
|
|
|
CvMat tdata = _train_data, responses = _responses, vidx = _var_idx, sidx = _sample_idx;
|
|
|
|
return train(&tdata, &responses, vidx.data.ptr ? &vidx : 0, sidx.data.ptr ? &sidx : 0, _params);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CvSVM::train_auto( const Mat& _train_data, const Mat& _responses,
|
|
|
|
const Mat& _var_idx, const Mat& _sample_idx, CvSVMParams _params, int k_fold,
|
|
|
|
CvParamGrid C_grid, CvParamGrid gamma_grid, CvParamGrid p_grid,
|
|
|
|
CvParamGrid nu_grid, CvParamGrid coef_grid, CvParamGrid degree_grid, bool balanced )
|
|
|
|
{
|
|
|
|
CvMat tdata = _train_data, responses = _responses, vidx = _var_idx, sidx = _sample_idx;
|
|
|
|
return train_auto(&tdata, &responses, vidx.data.ptr ? &vidx : 0,
|
|
|
|
sidx.data.ptr ? &sidx : 0, _params, k_fold, C_grid, gamma_grid, p_grid,
|
|
|
|
nu_grid, coef_grid, degree_grid, balanced);
|
|
|
|
}
|
|
|
|
|
|
|
|
float CvSVM::predict( const Mat& _sample, bool returnDFVal ) const
|
|
|
|
{
|
|
|
|
CvMat sample = _sample;
|
|
|
|
return predict(&sample, returnDFVal);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVM::write_params( CvFileStorage* fs ) const
|
|
|
|
{
|
|
|
|
//CV_FUNCNAME( "CvSVM::write_params" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int svm_type = params.svm_type;
|
|
|
|
int kernel_type = params.kernel_type;
|
|
|
|
|
|
|
|
const char* svm_type_str =
|
|
|
|
svm_type == CvSVM::C_SVC ? "C_SVC" :
|
|
|
|
svm_type == CvSVM::NU_SVC ? "NU_SVC" :
|
|
|
|
svm_type == CvSVM::ONE_CLASS ? "ONE_CLASS" :
|
|
|
|
svm_type == CvSVM::EPS_SVR ? "EPS_SVR" :
|
|
|
|
svm_type == CvSVM::NU_SVR ? "NU_SVR" : 0;
|
|
|
|
const char* kernel_type_str =
|
|
|
|
kernel_type == CvSVM::LINEAR ? "LINEAR" :
|
|
|
|
kernel_type == CvSVM::POLY ? "POLY" :
|
|
|
|
kernel_type == CvSVM::RBF ? "RBF" :
|
|
|
|
kernel_type == CvSVM::SIGMOID ? "SIGMOID" : 0;
|
|
|
|
|
|
|
|
if( svm_type_str )
|
|
|
|
cvWriteString( fs, "svm_type", svm_type_str );
|
|
|
|
else
|
|
|
|
cvWriteInt( fs, "svm_type", svm_type );
|
|
|
|
|
|
|
|
// save kernel
|
|
|
|
cvStartWriteStruct( fs, "kernel", CV_NODE_MAP + CV_NODE_FLOW );
|
|
|
|
|
|
|
|
if( kernel_type_str )
|
|
|
|
cvWriteString( fs, "type", kernel_type_str );
|
|
|
|
else
|
|
|
|
cvWriteInt( fs, "type", kernel_type );
|
|
|
|
|
|
|
|
if( kernel_type == CvSVM::POLY || !kernel_type_str )
|
|
|
|
cvWriteReal( fs, "degree", params.degree );
|
|
|
|
|
|
|
|
if( kernel_type != CvSVM::LINEAR || !kernel_type_str )
|
|
|
|
cvWriteReal( fs, "gamma", params.gamma );
|
|
|
|
|
|
|
|
if( kernel_type == CvSVM::POLY || kernel_type == CvSVM::SIGMOID || !kernel_type_str )
|
|
|
|
cvWriteReal( fs, "coef0", params.coef0 );
|
|
|
|
|
|
|
|
cvEndWriteStruct(fs);
|
|
|
|
|
|
|
|
if( svm_type == CvSVM::C_SVC || svm_type == CvSVM::EPS_SVR ||
|
|
|
|
svm_type == CvSVM::NU_SVR || !svm_type_str )
|
|
|
|
cvWriteReal( fs, "C", params.C );
|
|
|
|
|
|
|
|
if( svm_type == CvSVM::NU_SVC || svm_type == CvSVM::ONE_CLASS ||
|
|
|
|
svm_type == CvSVM::NU_SVR || !svm_type_str )
|
|
|
|
cvWriteReal( fs, "nu", params.nu );
|
|
|
|
|
|
|
|
if( svm_type == CvSVM::EPS_SVR || !svm_type_str )
|
|
|
|
cvWriteReal( fs, "p", params.p );
|
|
|
|
|
|
|
|
cvStartWriteStruct( fs, "term_criteria", CV_NODE_MAP + CV_NODE_FLOW );
|
|
|
|
if( params.term_crit.type & CV_TERMCRIT_EPS )
|
|
|
|
cvWriteReal( fs, "epsilon", params.term_crit.epsilon );
|
|
|
|
if( params.term_crit.type & CV_TERMCRIT_ITER )
|
|
|
|
cvWriteInt( fs, "iterations", params.term_crit.max_iter );
|
|
|
|
cvEndWriteStruct( fs );
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVM::write( CvFileStorage* fs, const char* name ) const
|
|
|
|
{
|
|
|
|
CV_FUNCNAME( "CvSVM::write" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int i, var_count = get_var_count(), df_count, class_count;
|
|
|
|
const CvSVMDecisionFunc* df = decision_func;
|
|
|
|
|
|
|
|
cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_ML_SVM );
|
|
|
|
|
|
|
|
write_params( fs );
|
|
|
|
|
|
|
|
cvWriteInt( fs, "var_all", var_all );
|
|
|
|
cvWriteInt( fs, "var_count", var_count );
|
|
|
|
|
|
|
|
class_count = class_labels ? class_labels->cols :
|
|
|
|
params.svm_type == CvSVM::ONE_CLASS ? 1 : 0;
|
|
|
|
|
|
|
|
if( class_count )
|
|
|
|
{
|
|
|
|
cvWriteInt( fs, "class_count", class_count );
|
|
|
|
|
|
|
|
if( class_labels )
|
|
|
|
cvWrite( fs, "class_labels", class_labels );
|
|
|
|
|
|
|
|
if( class_weights )
|
|
|
|
cvWrite( fs, "class_weights", class_weights );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( var_idx )
|
|
|
|
cvWrite( fs, "var_idx", var_idx );
|
|
|
|
|
|
|
|
// write the joint collection of support vectors
|
|
|
|
cvWriteInt( fs, "sv_total", sv_total );
|
|
|
|
cvStartWriteStruct( fs, "support_vectors", CV_NODE_SEQ );
|
|
|
|
for( i = 0; i < sv_total; i++ )
|
|
|
|
{
|
|
|
|
cvStartWriteStruct( fs, 0, CV_NODE_SEQ + CV_NODE_FLOW );
|
|
|
|
cvWriteRawData( fs, sv[i], var_count, "f" );
|
|
|
|
cvEndWriteStruct( fs );
|
|
|
|
}
|
|
|
|
|
|
|
|
cvEndWriteStruct( fs );
|
|
|
|
|
|
|
|
// write decision functions
|
|
|
|
df_count = class_count > 1 ? class_count*(class_count-1)/2 : 1;
|
|
|
|
df = decision_func;
|
|
|
|
|
|
|
|
cvStartWriteStruct( fs, "decision_functions", CV_NODE_SEQ );
|
|
|
|
for( i = 0; i < df_count; i++ )
|
|
|
|
{
|
|
|
|
int sv_count = df[i].sv_count;
|
|
|
|
cvStartWriteStruct( fs, 0, CV_NODE_MAP );
|
|
|
|
cvWriteInt( fs, "sv_count", sv_count );
|
|
|
|
cvWriteReal( fs, "rho", df[i].rho );
|
|
|
|
cvStartWriteStruct( fs, "alpha", CV_NODE_SEQ+CV_NODE_FLOW );
|
|
|
|
cvWriteRawData( fs, df[i].alpha, df[i].sv_count, "d" );
|
|
|
|
cvEndWriteStruct( fs );
|
|
|
|
if( class_count > 1 )
|
|
|
|
{
|
|
|
|
cvStartWriteStruct( fs, "index", CV_NODE_SEQ+CV_NODE_FLOW );
|
|
|
|
cvWriteRawData( fs, df[i].sv_index, df[i].sv_count, "i" );
|
|
|
|
cvEndWriteStruct( fs );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
CV_ASSERT( sv_count == sv_total );
|
|
|
|
cvEndWriteStruct( fs );
|
|
|
|
}
|
|
|
|
cvEndWriteStruct( fs );
|
|
|
|
cvEndWriteStruct( fs );
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVM::read_params( CvFileStorage* fs, CvFileNode* svm_node )
|
|
|
|
{
|
|
|
|
CV_FUNCNAME( "CvSVM::read_params" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int svm_type, kernel_type;
|
|
|
|
CvSVMParams _params;
|
|
|
|
|
|
|
|
CvFileNode* tmp_node = cvGetFileNodeByName( fs, svm_node, "svm_type" );
|
|
|
|
CvFileNode* kernel_node;
|
|
|
|
if( !tmp_node )
|
|
|
|
CV_ERROR( CV_StsBadArg, "svm_type tag is not found" );
|
|
|
|
|
|
|
|
if( CV_NODE_TYPE(tmp_node->tag) == CV_NODE_INT )
|
|
|
|
svm_type = cvReadInt( tmp_node, -1 );
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const char* svm_type_str = cvReadString( tmp_node, "" );
|
|
|
|
svm_type =
|
|
|
|
strcmp( svm_type_str, "C_SVC" ) == 0 ? CvSVM::C_SVC :
|
|
|
|
strcmp( svm_type_str, "NU_SVC" ) == 0 ? CvSVM::NU_SVC :
|
|
|
|
strcmp( svm_type_str, "ONE_CLASS" ) == 0 ? CvSVM::ONE_CLASS :
|
|
|
|
strcmp( svm_type_str, "EPS_SVR" ) == 0 ? CvSVM::EPS_SVR :
|
|
|
|
strcmp( svm_type_str, "NU_SVR" ) == 0 ? CvSVM::NU_SVR : -1;
|
|
|
|
|
|
|
|
if( svm_type < 0 )
|
|
|
|
CV_ERROR( CV_StsParseError, "Missing of invalid SVM type" );
|
|
|
|
}
|
|
|
|
|
|
|
|
kernel_node = cvGetFileNodeByName( fs, svm_node, "kernel" );
|
|
|
|
if( !kernel_node )
|
|
|
|
CV_ERROR( CV_StsParseError, "SVM kernel tag is not found" );
|
|
|
|
|
|
|
|
tmp_node = cvGetFileNodeByName( fs, kernel_node, "type" );
|
|
|
|
if( !tmp_node )
|
|
|
|
CV_ERROR( CV_StsParseError, "SVM kernel type tag is not found" );
|
|
|
|
|
|
|
|
if( CV_NODE_TYPE(tmp_node->tag) == CV_NODE_INT )
|
|
|
|
kernel_type = cvReadInt( tmp_node, -1 );
|
|
|
|
else
|
|
|
|
{
|
|
|
|
const char* kernel_type_str = cvReadString( tmp_node, "" );
|
|
|
|
kernel_type =
|
|
|
|
strcmp( kernel_type_str, "LINEAR" ) == 0 ? CvSVM::LINEAR :
|
|
|
|
strcmp( kernel_type_str, "POLY" ) == 0 ? CvSVM::POLY :
|
|
|
|
strcmp( kernel_type_str, "RBF" ) == 0 ? CvSVM::RBF :
|
|
|
|
strcmp( kernel_type_str, "SIGMOID" ) == 0 ? CvSVM::SIGMOID : -1;
|
|
|
|
|
|
|
|
if( kernel_type < 0 )
|
|
|
|
CV_ERROR( CV_StsParseError, "Missing of invalid SVM kernel type" );
|
|
|
|
}
|
|
|
|
|
|
|
|
_params.svm_type = svm_type;
|
|
|
|
_params.kernel_type = kernel_type;
|
|
|
|
_params.degree = cvReadRealByName( fs, kernel_node, "degree", 0 );
|
|
|
|
_params.gamma = cvReadRealByName( fs, kernel_node, "gamma", 0 );
|
|
|
|
_params.coef0 = cvReadRealByName( fs, kernel_node, "coef0", 0 );
|
|
|
|
|
|
|
|
_params.C = cvReadRealByName( fs, svm_node, "C", 0 );
|
|
|
|
_params.nu = cvReadRealByName( fs, svm_node, "nu", 0 );
|
|
|
|
_params.p = cvReadRealByName( fs, svm_node, "p", 0 );
|
|
|
|
_params.class_weights = 0;
|
|
|
|
|
|
|
|
tmp_node = cvGetFileNodeByName( fs, svm_node, "term_criteria" );
|
|
|
|
if( tmp_node )
|
|
|
|
{
|
|
|
|
_params.term_crit.epsilon = cvReadRealByName( fs, tmp_node, "epsilon", -1. );
|
|
|
|
_params.term_crit.max_iter = cvReadIntByName( fs, tmp_node, "iterations", -1 );
|
|
|
|
_params.term_crit.type = (_params.term_crit.epsilon >= 0 ? CV_TERMCRIT_EPS : 0) +
|
|
|
|
(_params.term_crit.max_iter >= 0 ? CV_TERMCRIT_ITER : 0);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
_params.term_crit = cvTermCriteria( CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 1000, FLT_EPSILON );
|
|
|
|
|
|
|
|
set_params( _params );
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvSVM::read( CvFileStorage* fs, CvFileNode* svm_node )
|
|
|
|
{
|
|
|
|
const double not_found_dbl = DBL_MAX;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvSVM::read" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
int i, var_count, df_count, class_count;
|
|
|
|
int block_size = 1 << 16, sv_size;
|
|
|
|
CvFileNode *sv_node, *df_node;
|
|
|
|
CvSVMDecisionFunc* df;
|
|
|
|
CvSeqReader reader;
|
|
|
|
|
|
|
|
if( !svm_node )
|
|
|
|
CV_ERROR( CV_StsParseError, "The requested element is not found" );
|
|
|
|
|
|
|
|
clear();
|
|
|
|
|
|
|
|
// read SVM parameters
|
|
|
|
read_params( fs, svm_node );
|
|
|
|
|
|
|
|
// and top-level data
|
|
|
|
sv_total = cvReadIntByName( fs, svm_node, "sv_total", -1 );
|
|
|
|
var_all = cvReadIntByName( fs, svm_node, "var_all", -1 );
|
|
|
|
var_count = cvReadIntByName( fs, svm_node, "var_count", var_all );
|
|
|
|
class_count = cvReadIntByName( fs, svm_node, "class_count", 0 );
|
|
|
|
|
|
|
|
if( sv_total <= 0 || var_all <= 0 || var_count <= 0 || var_count > var_all || class_count < 0 )
|
|
|
|
CV_ERROR( CV_StsParseError, "SVM model data is invalid, check sv_count, var_* and class_count tags" );
|
|
|
|
|
|
|
|
CV_CALL( class_labels = (CvMat*)cvReadByName( fs, svm_node, "class_labels" ));
|
|
|
|
CV_CALL( class_weights = (CvMat*)cvReadByName( fs, svm_node, "class_weights" ));
|
|
|
|
CV_CALL( var_idx = (CvMat*)cvReadByName( fs, svm_node, "var_idx" ));
|
|
|
|
|
|
|
|
if( class_count > 1 && (!class_labels ||
|
|
|
|
!CV_IS_MAT(class_labels) || class_labels->cols != class_count))
|
|
|
|
CV_ERROR( CV_StsParseError, "Array of class labels is missing or invalid" );
|
|
|
|
|
|
|
|
if( var_count < var_all && (!var_idx || !CV_IS_MAT(var_idx) || var_idx->cols != var_count) )
|
|
|
|
CV_ERROR( CV_StsParseError, "var_idx array is missing or invalid" );
|
|
|
|
|
|
|
|
// read support vectors
|
|
|
|
sv_node = cvGetFileNodeByName( fs, svm_node, "support_vectors" );
|
|
|
|
if( !sv_node || !CV_NODE_IS_SEQ(sv_node->tag))
|
|
|
|
CV_ERROR( CV_StsParseError, "Missing or invalid sequence of support vectors" );
|
|
|
|
|
|
|
|
block_size = MAX( block_size, sv_total*(int)sizeof(CvSVMKernelRow));
|
|
|
|
block_size = MAX( block_size, sv_total*2*(int)sizeof(double));
|
|
|
|
block_size = MAX( block_size, var_all*(int)sizeof(double));
|
|
|
|
|
|
|
|
CV_CALL( storage = cvCreateMemStorage(block_size + sizeof(CvMemBlock) + sizeof(CvSeqBlock)));
|
|
|
|
CV_CALL( sv = (float**)cvMemStorageAlloc( storage,
|
|
|
|
sv_total*sizeof(sv[0]) ));
|
|
|
|
|
|
|
|
CV_CALL( cvStartReadSeq( sv_node->data.seq, &reader, 0 ));
|
|
|
|
sv_size = var_count*sizeof(sv[0][0]);
|
|
|
|
|
|
|
|
for( i = 0; i < sv_total; i++ )
|
|
|
|
{
|
|
|
|
CvFileNode* sv_elem = (CvFileNode*)reader.ptr;
|
|
|
|
CV_ASSERT( var_count == 1 || (CV_NODE_IS_SEQ(sv_elem->tag) &&
|
|
|
|
sv_elem->data.seq->total == var_count) );
|
|
|
|
|
|
|
|
CV_CALL( sv[i] = (float*)cvMemStorageAlloc( storage, sv_size ));
|
|
|
|
CV_CALL( cvReadRawData( fs, sv_elem, sv[i], "f" ));
|
|
|
|
CV_NEXT_SEQ_ELEM( sv_node->data.seq->elem_size, reader );
|
|
|
|
}
|
|
|
|
|
|
|
|
// read decision functions
|
|
|
|
df_count = class_count > 1 ? class_count*(class_count-1)/2 : 1;
|
|
|
|
df_node = cvGetFileNodeByName( fs, svm_node, "decision_functions" );
|
|
|
|
if( !df_node || !CV_NODE_IS_SEQ(df_node->tag) ||
|
|
|
|
df_node->data.seq->total != df_count )
|
|
|
|
CV_ERROR( CV_StsParseError, "decision_functions is missing or is not a collection "
|
|
|
|
"or has a wrong number of elements" );
|
|
|
|
|
|
|
|
CV_CALL( df = decision_func = (CvSVMDecisionFunc*)cvAlloc( df_count*sizeof(df[0]) ));
|
|
|
|
cvStartReadSeq( df_node->data.seq, &reader, 0 );
|
|
|
|
|
|
|
|
for( i = 0; i < df_count; i++ )
|
|
|
|
{
|
|
|
|
CvFileNode* df_elem = (CvFileNode*)reader.ptr;
|
|
|
|
CvFileNode* alpha_node = cvGetFileNodeByName( fs, df_elem, "alpha" );
|
|
|
|
|
|
|
|
int sv_count = cvReadIntByName( fs, df_elem, "sv_count", -1 );
|
|
|
|
if( sv_count <= 0 )
|
|
|
|
CV_ERROR( CV_StsParseError, "sv_count is missing or non-positive" );
|
|
|
|
df[i].sv_count = sv_count;
|
|
|
|
|
|
|
|
df[i].rho = cvReadRealByName( fs, df_elem, "rho", not_found_dbl );
|
|
|
|
if( fabs(df[i].rho - not_found_dbl) < DBL_EPSILON )
|
|
|
|
CV_ERROR( CV_StsParseError, "rho is missing" );
|
|
|
|
|
|
|
|
if( !alpha_node )
|
|
|
|
CV_ERROR( CV_StsParseError, "alpha is missing in the decision function" );
|
|
|
|
|
|
|
|
CV_CALL( df[i].alpha = (double*)cvMemStorageAlloc( storage,
|
|
|
|
sv_count*sizeof(df[i].alpha[0])));
|
|
|
|
CV_ASSERT( sv_count == 1 || (CV_NODE_IS_SEQ(alpha_node->tag) &&
|
|
|
|
alpha_node->data.seq->total == sv_count) );
|
|
|
|
CV_CALL( cvReadRawData( fs, alpha_node, df[i].alpha, "d" ));
|
|
|
|
|
|
|
|
if( class_count > 1 )
|
|
|
|
{
|
|
|
|
CvFileNode* index_node = cvGetFileNodeByName( fs, df_elem, "index" );
|
|
|
|
if( !index_node )
|
|
|
|
CV_ERROR( CV_StsParseError, "index is missing in the decision function" );
|
|
|
|
CV_CALL( df[i].sv_index = (int*)cvMemStorageAlloc( storage,
|
|
|
|
sv_count*sizeof(df[i].sv_index[0])));
|
|
|
|
CV_ASSERT( sv_count == 1 || (CV_NODE_IS_SEQ(index_node->tag) &&
|
|
|
|
index_node->data.seq->total == sv_count) );
|
|
|
|
CV_CALL( cvReadRawData( fs, index_node, df[i].sv_index, "i" ));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
df[i].sv_index = 0;
|
|
|
|
|
|
|
|
CV_NEXT_SEQ_ELEM( df_node->data.seq->elem_size, reader );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( cvReadIntByName(fs, svm_node, "optimize_linear", 1) != 0 )
|
|
|
|
optimize_linear_svm();
|
|
|
|
create_kernel();
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
|
|
|
|
static void*
|
|
|
|
icvCloneSVM( const void* _src )
|
|
|
|
{
|
|
|
|
CvSVMModel* dst = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "icvCloneSVM" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
const CvSVMModel* src = (const CvSVMModel*)_src;
|
|
|
|
int var_count, class_count;
|
|
|
|
int i, sv_total, df_count;
|
|
|
|
int sv_size;
|
|
|
|
|
|
|
|
if( !CV_IS_SVM(src) )
|
|
|
|
CV_ERROR( !src ? CV_StsNullPtr : CV_StsBadArg, "Input pointer is NULL or invalid" );
|
|
|
|
|
|
|
|
// 0. create initial CvSVMModel structure
|
|
|
|
CV_CALL( dst = icvCreateSVM() );
|
|
|
|
dst->params = src->params;
|
|
|
|
dst->params.weight_labels = 0;
|
|
|
|
dst->params.weights = 0;
|
|
|
|
|
|
|
|
dst->var_all = src->var_all;
|
|
|
|
if( src->class_labels )
|
|
|
|
dst->class_labels = cvCloneMat( src->class_labels );
|
|
|
|
if( src->class_weights )
|
|
|
|
dst->class_weights = cvCloneMat( src->class_weights );
|
|
|
|
if( src->comp_idx )
|
|
|
|
dst->comp_idx = cvCloneMat( src->comp_idx );
|
|
|
|
|
|
|
|
var_count = src->comp_idx ? src->comp_idx->cols : src->var_all;
|
|
|
|
class_count = src->class_labels ? src->class_labels->cols :
|
|
|
|
src->params.svm_type == CvSVM::ONE_CLASS ? 1 : 0;
|
|
|
|
sv_total = dst->sv_total = src->sv_total;
|
|
|
|
CV_CALL( dst->storage = cvCreateMemStorage( src->storage->block_size ));
|
|
|
|
CV_CALL( dst->sv = (float**)cvMemStorageAlloc( dst->storage,
|
|
|
|
sv_total*sizeof(dst->sv[0]) ));
|
|
|
|
|
|
|
|
sv_size = var_count*sizeof(dst->sv[0][0]);
|
|
|
|
|
|
|
|
for( i = 0; i < sv_total; i++ )
|
|
|
|
{
|
|
|
|
CV_CALL( dst->sv[i] = (float*)cvMemStorageAlloc( dst->storage, sv_size ));
|
|
|
|
memcpy( dst->sv[i], src->sv[i], sv_size );
|
|
|
|
}
|
|
|
|
|
|
|
|
df_count = class_count > 1 ? class_count*(class_count-1)/2 : 1;
|
|
|
|
|
|
|
|
CV_CALL( dst->decision_func = cvAlloc( df_count*sizeof(CvSVMDecisionFunc) ));
|
|
|
|
|
|
|
|
for( i = 0; i < df_count; i++ )
|
|
|
|
{
|
|
|
|
const CvSVMDecisionFunc *sdf =
|
|
|
|
(const CvSVMDecisionFunc*)src->decision_func+i;
|
|
|
|
CvSVMDecisionFunc *ddf =
|
|
|
|
(CvSVMDecisionFunc*)dst->decision_func+i;
|
|
|
|
int sv_count = sdf->sv_count;
|
|
|
|
ddf->sv_count = sv_count;
|
|
|
|
ddf->rho = sdf->rho;
|
|
|
|
CV_CALL( ddf->alpha = (double*)cvMemStorageAlloc( dst->storage,
|
|
|
|
sv_count*sizeof(ddf->alpha[0])));
|
|
|
|
memcpy( ddf->alpha, sdf->alpha, sv_count*sizeof(ddf->alpha[0]));
|
|
|
|
|
|
|
|
if( class_count > 1 )
|
|
|
|
{
|
|
|
|
CV_CALL( ddf->sv_index = (int*)cvMemStorageAlloc( dst->storage,
|
|
|
|
sv_count*sizeof(ddf->sv_index[0])));
|
|
|
|
memcpy( ddf->sv_index, sdf->sv_index, sv_count*sizeof(ddf->sv_index[0]));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
ddf->sv_index = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
if( cvGetErrStatus() < 0 && dst )
|
|
|
|
icvReleaseSVM( &dst );
|
|
|
|
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int icvRegisterSVMType()
|
|
|
|
{
|
|
|
|
CvTypeInfo info;
|
|
|
|
memset( &info, 0, sizeof(info) );
|
|
|
|
|
|
|
|
info.flags = 0;
|
|
|
|
info.header_size = sizeof( info );
|
|
|
|
info.is_instance = icvIsSVM;
|
|
|
|
info.release = (CvReleaseFunc)icvReleaseSVM;
|
|
|
|
info.read = icvReadSVM;
|
|
|
|
info.write = icvWriteSVM;
|
|
|
|
info.clone = icvCloneSVM;
|
|
|
|
info.type_name = CV_TYPE_NAME_ML_SVM;
|
|
|
|
cvRegisterType( &info );
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int svm = icvRegisterSVMType();
|
|
|
|
|
|
|
|
/* The function trains SVM model with optimal parameters, obtained by using cross-validation.
|
|
|
|
The parameters to be estimated should be indicated by setting theirs values to FLT_MAX.
|
|
|
|
The optimal parameters are saved in <model_params> */
|
|
|
|
CV_IMPL CvStatModel*
|
|
|
|
cvTrainSVM_CrossValidation( const CvMat* train_data, int tflag,
|
|
|
|
const CvMat* responses,
|
|
|
|
CvStatModelParams* model_params,
|
|
|
|
const CvStatModelParams* cross_valid_params,
|
|
|
|
const CvMat* comp_idx,
|
|
|
|
const CvMat* sample_idx,
|
|
|
|
const CvParamGrid* degree_grid,
|
|
|
|
const CvParamGrid* gamma_grid,
|
|
|
|
const CvParamGrid* coef_grid,
|
|
|
|
const CvParamGrid* C_grid,
|
|
|
|
const CvParamGrid* nu_grid,
|
|
|
|
const CvParamGrid* p_grid )
|
|
|
|
{
|
|
|
|
CvStatModel* svm = 0;
|
|
|
|
|
|
|
|
CV_FUNCNAME("cvTainSVMCrossValidation");
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
double degree_step = 7,
|
|
|
|
g_step = 15,
|
|
|
|
coef_step = 14,
|
|
|
|
C_step = 20,
|
|
|
|
nu_step = 5,
|
|
|
|
p_step = 7; // all steps must be > 1
|
|
|
|
double degree_begin = 0.01, degree_end = 2;
|
|
|
|
double g_begin = 1e-5, g_end = 0.5;
|
|
|
|
double coef_begin = 0.1, coef_end = 300;
|
|
|
|
double C_begin = 0.1, C_end = 6000;
|
|
|
|
double nu_begin = 0.01, nu_end = 0.4;
|
|
|
|
double p_begin = 0.01, p_end = 100;
|
|
|
|
|
|
|
|
double rate = 0, gamma = 0, C = 0, degree = 0, coef = 0, p = 0, nu = 0;
|
|
|
|
|
|
|
|
double best_rate = 0;
|
|
|
|
double best_degree = degree_begin;
|
|
|
|
double best_gamma = g_begin;
|
|
|
|
double best_coef = coef_begin;
|
|
|
|
double best_C = C_begin;
|
|
|
|
double best_nu = nu_begin;
|
|
|
|
double best_p = p_begin;
|
|
|
|
|
|
|
|
CvSVMModelParams svm_params, *psvm_params;
|
|
|
|
CvCrossValidationParams* cv_params = (CvCrossValidationParams*)cross_valid_params;
|
|
|
|
int svm_type, kernel;
|
|
|
|
int is_regression;
|
|
|
|
|
|
|
|
if( !model_params )
|
|
|
|
CV_ERROR( CV_StsBadArg, "" );
|
|
|
|
if( !cv_params )
|
|
|
|
CV_ERROR( CV_StsBadArg, "" );
|
|
|
|
|
|
|
|
svm_params = *(CvSVMModelParams*)model_params;
|
|
|
|
psvm_params = (CvSVMModelParams*)model_params;
|
|
|
|
svm_type = svm_params.svm_type;
|
|
|
|
kernel = svm_params.kernel_type;
|
|
|
|
|
|
|
|
svm_params.degree = svm_params.degree > 0 ? svm_params.degree : 1;
|
|
|
|
svm_params.gamma = svm_params.gamma > 0 ? svm_params.gamma : 1;
|
|
|
|
svm_params.coef0 = svm_params.coef0 > 0 ? svm_params.coef0 : 1e-6;
|
|
|
|
svm_params.C = svm_params.C > 0 ? svm_params.C : 1;
|
|
|
|
svm_params.nu = svm_params.nu > 0 ? svm_params.nu : 1;
|
|
|
|
svm_params.p = svm_params.p > 0 ? svm_params.p : 1;
|
|
|
|
|
|
|
|
if( degree_grid )
|
|
|
|
{
|
|
|
|
if( !(degree_grid->max_val == 0 && degree_grid->min_val == 0 &&
|
|
|
|
degree_grid->step == 0) )
|
|
|
|
{
|
|
|
|
if( degree_grid->min_val > degree_grid->max_val )
|
|
|
|
CV_ERROR( CV_StsBadArg,
|
|
|
|
"low bound of grid should be less then the upper one");
|
|
|
|
if( degree_grid->step <= 1 )
|
|
|
|
CV_ERROR( CV_StsBadArg, "grid step should be greater 1" );
|
|
|
|
degree_begin = degree_grid->min_val;
|
|
|
|
degree_end = degree_grid->max_val;
|
|
|
|
degree_step = degree_grid->step;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
degree_begin = degree_end = svm_params.degree;
|
|
|
|
|
|
|
|
if( gamma_grid )
|
|
|
|
{
|
|
|
|
if( !(gamma_grid->max_val == 0 && gamma_grid->min_val == 0 &&
|
|
|
|
gamma_grid->step == 0) )
|
|
|
|
{
|
|
|
|
if( gamma_grid->min_val > gamma_grid->max_val )
|
|
|
|
CV_ERROR( CV_StsBadArg,
|
|
|
|
"low bound of grid should be less then the upper one");
|
|
|
|
if( gamma_grid->step <= 1 )
|
|
|
|
CV_ERROR( CV_StsBadArg, "grid step should be greater 1" );
|
|
|
|
g_begin = gamma_grid->min_val;
|
|
|
|
g_end = gamma_grid->max_val;
|
|
|
|
g_step = gamma_grid->step;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
g_begin = g_end = svm_params.gamma;
|
|
|
|
|
|
|
|
if( coef_grid )
|
|
|
|
{
|
|
|
|
if( !(coef_grid->max_val == 0 && coef_grid->min_val == 0 &&
|
|
|
|
coef_grid->step == 0) )
|
|
|
|
{
|
|
|
|
if( coef_grid->min_val > coef_grid->max_val )
|
|
|
|
CV_ERROR( CV_StsBadArg,
|
|
|
|
"low bound of grid should be less then the upper one");
|
|
|
|
if( coef_grid->step <= 1 )
|
|
|
|
CV_ERROR( CV_StsBadArg, "grid step should be greater 1" );
|
|
|
|
coef_begin = coef_grid->min_val;
|
|
|
|
coef_end = coef_grid->max_val;
|
|
|
|
coef_step = coef_grid->step;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
coef_begin = coef_end = svm_params.coef0;
|
|
|
|
|
|
|
|
if( C_grid )
|
|
|
|
{
|
|
|
|
if( !(C_grid->max_val == 0 && C_grid->min_val == 0 && C_grid->step == 0))
|
|
|
|
{
|
|
|
|
if( C_grid->min_val > C_grid->max_val )
|
|
|
|
CV_ERROR( CV_StsBadArg,
|
|
|
|
"low bound of grid should be less then the upper one");
|
|
|
|
if( C_grid->step <= 1 )
|
|
|
|
CV_ERROR( CV_StsBadArg, "grid step should be greater 1" );
|
|
|
|
C_begin = C_grid->min_val;
|
|
|
|
C_end = C_grid->max_val;
|
|
|
|
C_step = C_grid->step;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
C_begin = C_end = svm_params.C;
|
|
|
|
|
|
|
|
if( nu_grid )
|
|
|
|
{
|
|
|
|
if(!(nu_grid->max_val == 0 && nu_grid->min_val == 0 && nu_grid->step==0))
|
|
|
|
{
|
|
|
|
if( nu_grid->min_val > nu_grid->max_val )
|
|
|
|
CV_ERROR( CV_StsBadArg,
|
|
|
|
"low bound of grid should be less then the upper one");
|
|
|
|
if( nu_grid->step <= 1 )
|
|
|
|
CV_ERROR( CV_StsBadArg, "grid step should be greater 1" );
|
|
|
|
nu_begin = nu_grid->min_val;
|
|
|
|
nu_end = nu_grid->max_val;
|
|
|
|
nu_step = nu_grid->step;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
nu_begin = nu_end = svm_params.nu;
|
|
|
|
|
|
|
|
if( p_grid )
|
|
|
|
{
|
|
|
|
if( !(p_grid->max_val == 0 && p_grid->min_val == 0 && p_grid->step == 0))
|
|
|
|
{
|
|
|
|
if( p_grid->min_val > p_grid->max_val )
|
|
|
|
CV_ERROR( CV_StsBadArg,
|
|
|
|
"low bound of grid should be less then the upper one");
|
|
|
|
if( p_grid->step <= 1 )
|
|
|
|
CV_ERROR( CV_StsBadArg, "grid step should be greater 1" );
|
|
|
|
p_begin = p_grid->min_val;
|
|
|
|
p_end = p_grid->max_val;
|
|
|
|
p_step = p_grid->step;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
p_begin = p_end = svm_params.p;
|
|
|
|
|
|
|
|
// these parameters are not used:
|
|
|
|
if( kernel != CvSVM::POLY )
|
|
|
|
degree_begin = degree_end = svm_params.degree;
|
|
|
|
|
|
|
|
if( kernel == CvSVM::LINEAR )
|
|
|
|
g_begin = g_end = svm_params.gamma;
|
|
|
|
|
|
|
|
if( kernel != CvSVM::POLY && kernel != CvSVM::SIGMOID )
|
|
|
|
coef_begin = coef_end = svm_params.coef0;
|
|
|
|
|
|
|
|
if( svm_type == CvSVM::NU_SVC || svm_type == CvSVM::ONE_CLASS )
|
|
|
|
C_begin = C_end = svm_params.C;
|
|
|
|
|
|
|
|
if( svm_type == CvSVM::C_SVC || svm_type == CvSVM::EPS_SVR )
|
|
|
|
nu_begin = nu_end = svm_params.nu;
|
|
|
|
|
|
|
|
if( svm_type != CvSVM::EPS_SVR )
|
|
|
|
p_begin = p_end = svm_params.p;
|
|
|
|
|
|
|
|
is_regression = cv_params->is_regression;
|
|
|
|
best_rate = is_regression ? FLT_MAX : 0;
|
|
|
|
|
|
|
|
assert( g_step > 1 && degree_step > 1 && coef_step > 1);
|
|
|
|
assert( p_step > 1 && C_step > 1 && nu_step > 1 );
|
|
|
|
|
|
|
|
for( degree = degree_begin; degree <= degree_end; degree *= degree_step )
|
|
|
|
{
|
|
|
|
svm_params.degree = degree;
|
|
|
|
//printf("degree = %.3f\n", degree );
|
|
|
|
for( gamma= g_begin; gamma <= g_end; gamma *= g_step )
|
|
|
|
{
|
|
|
|
svm_params.gamma = gamma;
|
|
|
|
//printf(" gamma = %.3f\n", gamma );
|
|
|
|
for( coef = coef_begin; coef <= coef_end; coef *= coef_step )
|
|
|
|
{
|
|
|
|
svm_params.coef0 = coef;
|
|
|
|
//printf(" coef = %.3f\n", coef );
|
|
|
|
for( C = C_begin; C <= C_end; C *= C_step )
|
|
|
|
{
|
|
|
|
svm_params.C = C;
|
|
|
|
//printf(" C = %.3f\n", C );
|
|
|
|
for( nu = nu_begin; nu <= nu_end; nu *= nu_step )
|
|
|
|
{
|
|
|
|
svm_params.nu = nu;
|
|
|
|
//printf(" nu = %.3f\n", nu );
|
|
|
|
for( p = p_begin; p <= p_end; p *= p_step )
|
|
|
|
{
|
|
|
|
int well;
|
|
|
|
svm_params.p = p;
|
|
|
|
//printf(" p = %.3f\n", p );
|
|
|
|
|
|
|
|
CV_CALL(rate = cvCrossValidation( train_data, tflag, responses, &cvTrainSVM,
|
|
|
|
cross_valid_params, (CvStatModelParams*)&svm_params, comp_idx, sample_idx ));
|
|
|
|
|
|
|
|
well = rate > best_rate && !is_regression || rate < best_rate && is_regression;
|
|
|
|
if( well || (rate == best_rate && C < best_C) )
|
|
|
|
{
|
|
|
|
best_rate = rate;
|
|
|
|
best_degree = degree;
|
|
|
|
best_gamma = gamma;
|
|
|
|
best_coef = coef;
|
|
|
|
best_C = C;
|
|
|
|
best_nu = nu;
|
|
|
|
best_p = p;
|
|
|
|
}
|
|
|
|
//printf(" rate = %.2f\n", rate );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//printf("The best:\nrate = %.2f%% degree = %f gamma = %f coef = %f c = %f nu = %f p = %f\n",
|
|
|
|
// best_rate, best_degree, best_gamma, best_coef, best_C, best_nu, best_p );
|
|
|
|
|
|
|
|
psvm_params->C = best_C;
|
|
|
|
psvm_params->nu = best_nu;
|
|
|
|
psvm_params->p = best_p;
|
|
|
|
psvm_params->gamma = best_gamma;
|
|
|
|
psvm_params->degree = best_degree;
|
|
|
|
psvm_params->coef0 = best_coef;
|
|
|
|
|
|
|
|
CV_CALL(svm = cvTrainSVM( train_data, tflag, responses, model_params, comp_idx, sample_idx ));
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
return svm;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* End of file. */
|
|
|
|
|