Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

594 lines
16 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Mat basic operations: Copy, Set
//
// */
#include "precomp.hpp"
namespace cv
{
template<typename T> static void
copyMask_(const Mat& srcmat, Mat& dstmat, const Mat& maskmat)
{
const uchar* mask = maskmat.data;
size_t sstep = srcmat.step;
size_t dstep = dstmat.step;
size_t mstep = maskmat.step;
Size size = getContinuousSize(srcmat, dstmat, maskmat);
for( int y = 0; y < size.height; y++, mask += mstep )
{
const T* src = (const T*)(srcmat.data + sstep*y);
T* dst = (T*)(dstmat.data + dstep*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
if( mask[x] )
dst[x] = src[x];
if( mask[x+1] )
dst[x+1] = src[x+1];
if( mask[x+2] )
dst[x+2] = src[x+2];
if( mask[x+3] )
dst[x+3] = src[x+3];
}
for( ; x < size.width; x++ )
if( mask[x] )
dst[x] = src[x];
}
}
template<typename T> static void
setMask_(const void* _scalar, Mat& dstmat, const Mat& maskmat)
{
T scalar = *(T*)_scalar;
const uchar* mask = maskmat.data;
size_t dstep = dstmat.step;
size_t mstep = maskmat.step;
Size size = dstmat.size();
if( dstmat.isContinuous() && maskmat.isContinuous() )
{
size.width *= size.height;
size.height = 1;
}
for( int y = 0; y < size.height; y++, mask += mstep )
{
T* dst = (T*)(dstmat.data + dstep*y);
int x = 0;
for( ; x <= size.width - 4; x += 4 )
{
if( mask[x] )
dst[x] = scalar;
if( mask[x+1] )
dst[x+1] = scalar;
if( mask[x+2] )
dst[x+2] = scalar;
if( mask[x+3] )
dst[x+3] = scalar;
}
for( ; x < size.width; x++ )
if( mask[x] )
dst[x] = scalar;
}
}
typedef void (*SetMaskFunc)(const void* scalar, Mat& dst, const Mat& mask);
CopyMaskFunc g_copyMaskFuncTab[] =
{
0,
copyMask_<uchar>, // 1
copyMask_<ushort>, // 2
copyMask_<Vec<uchar,3> >, // 3
copyMask_<int>, // 4
0,
copyMask_<Vec<ushort,3> >, // 6
0,
copyMask_<int64>, // 8
0, 0, 0,
copyMask_<Vec<int,3> >, // 12
0, 0, 0,
copyMask_<Vec<int64,2> >, // 16
0, 0, 0, 0, 0, 0, 0,
copyMask_<Vec<int64,3> >, // 24
0, 0, 0, 0, 0, 0, 0,
copyMask_<Vec<int64,4> > // 32
};
static SetMaskFunc setMaskFuncTab[] =
{
0,
setMask_<uchar>, // 1
setMask_<ushort>, // 2
setMask_<Vec<uchar,3> >, // 3
setMask_<int>, // 4
0,
setMask_<Vec<ushort,3> >, // 6
0,
setMask_<int64>, // 8
0, 0, 0,
setMask_<Vec<int,3> >, // 12
0, 0, 0,
setMask_<Vec<int64,2> >, // 16
0, 0, 0, 0, 0, 0, 0,
setMask_<Vec<int64,3> >, // 24
0, 0, 0, 0, 0, 0, 0,
setMask_<Vec<int64,4> > // 32
};
/* dst = src */
void Mat::copyTo( Mat& dst ) const
{
if( data == dst.data )
return;
if( dims > 2 )
{
dst.create( dims, size, type() );
const Mat* arrays[] = { this, &dst, 0 };
Mat planes[2];
NAryMatIterator it(arrays, planes);
CV_DbgAssert(it.planes[0].isContinuous() &&
it.planes[1].isContinuous());
size_t planeSize = it.planes[0].elemSize()*it.planes[0].rows*it.planes[0].cols;
for( int i = 0; i < it.nplanes; i++, ++it )
memcpy(it.planes[1].data, it.planes[0].data, planeSize);
return;
}
dst.create( rows, cols, type() );
Size sz = size();
const uchar* sptr = data;
uchar* dptr = dst.data;
sz.width *= (int)elemSize();
if( isContinuous() && dst.isContinuous() )
{
sz.width *= sz.height;
sz.height = 1;
}
for( ; sz.height--; sptr += step, dptr += dst.step )
memcpy( dptr, sptr, sz.width );
}
void Mat::copyTo( Mat& dst, const Mat& mask ) const
{
if( !mask.data )
{
copyTo(dst);
return;
}
if( dims > 2 )
{
dst.create( dims, size, type() );
const Mat* arrays[] = { this, &dst, &mask, 0 };
Mat planes[3];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
it.planes[0].copyTo(it.planes[1], it.planes[2]);
return;
}
uchar* data0 = dst.data;
dst.create( size(), type() );
if( dst.data != data0 ) // do not leave dst uninitialized
dst = Scalar(0);
getCopyMaskFunc((int)elemSize())(*this, dst, mask);
}
Mat& Mat::operator = (const Scalar& s)
{
if( dims > 2 )
{
const Mat* arrays[] = { this, 0 };
Mat planes[1];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
it.planes[0] = s;
return *this;
}
Size sz = size();
uchar* dst = data;
sz.width *= (int)elemSize();
if( isContinuous() )
{
sz.width *= sz.height;
sz.height = 1;
}
if( s[0] == 0 && s[1] == 0 && s[2] == 0 && s[3] == 0 )
{
for( ; sz.height--; dst += step )
memset( dst, 0, sz.width );
}
else
{
int t = type(), esz1 = (int)elemSize1();
double scalar[12];
scalarToRawData(s, scalar, t, 12);
int copy_len = 12*esz1;
uchar* dst_limit = dst + sz.width;
if( sz.height-- )
{
while( dst + copy_len <= dst_limit )
{
memcpy( dst, scalar, copy_len );
dst += copy_len;
}
memcpy( dst, scalar, dst_limit - dst );
}
if( sz.height > 0 )
{
dst = dst_limit - sz.width + step;
for( ; sz.height--; dst += step )
memcpy( dst, data, sz.width );
}
}
return *this;
}
Mat& Mat::setTo(const Scalar& s, const Mat& mask)
{
if( !mask.data )
*this = s;
else
{
CV_Assert( channels() <= 4 );
SetMaskFunc func = setMaskFuncTab[elemSize()];
CV_Assert( func != 0 );
double buf[4];
scalarToRawData(s, buf, type(), 0);
if( dims > 2 )
{
const Mat* arrays[] = { this, &mask, 0 };
Mat planes[2];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func(buf, it.planes[0], it.planes[1]);
}
else
func(buf, *this, mask);
}
return *this;
}
template<typename T> static void
flipHoriz_( const Mat& srcmat, Mat& dstmat, bool flipv )
{
uchar* dst0 = dstmat.data;
size_t srcstep = srcmat.step;
int dststep = (int)dstmat.step;
Size size = srcmat.size();
if( flipv )
{
dst0 += (size.height - 1)*dststep;
dststep = -dststep;
}
for( int y = 0; y < size.height; y++ )
{
const T* src = (const T*)(srcmat.data + srcstep*y);
T* dst = (T*)(dst0 + dststep*y);
for( int i = 0; i < (size.width + 1)/2; i++ )
{
T t0 = src[i], t1 = src[size.width - i - 1];
dst[i] = t1; dst[size.width - i - 1] = t0;
}
}
}
typedef void (*FlipHorizFunc)( const Mat& src, Mat& dst, bool flipv );
static void
flipVert( const Mat& srcmat, Mat& dstmat )
{
const uchar* src = srcmat.data;
uchar* dst = dstmat.data;
size_t srcstep = srcmat.step, dststep = dstmat.step;
Size size = srcmat.size();
const uchar* src1 = src + (size.height - 1)*srcstep;
uchar* dst1 = dst + (size.height - 1)*dststep;
size.width *= (int)srcmat.elemSize();
for( int y = 0; y < (size.height + 1)/2; y++, src += srcstep, src1 -= srcstep,
dst += dststep, dst1 -= dststep )
{
int i = 0;
if( ((size_t)(src)|(size_t)(dst)|(size_t)src1|(size_t)dst1) % sizeof(int) == 0 )
{
for( ; i <= size.width - 16; i += 16 )
{
int t0 = ((int*)(src + i))[0];
int t1 = ((int*)(src1 + i))[0];
((int*)(dst + i))[0] = t1;
((int*)(dst1 + i))[0] = t0;
t0 = ((int*)(src + i))[1];
t1 = ((int*)(src1 + i))[1];
((int*)(dst + i))[1] = t1;
((int*)(dst1 + i))[1] = t0;
t0 = ((int*)(src + i))[2];
t1 = ((int*)(src1 + i))[2];
((int*)(dst + i))[2] = t1;
((int*)(dst1 + i))[2] = t0;
t0 = ((int*)(src + i))[3];
t1 = ((int*)(src1 + i))[3];
((int*)(dst + i))[3] = t1;
((int*)(dst1 + i))[3] = t0;
}
for( ; i <= size.width - 4; i += 4 )
{
int t0 = ((int*)(src + i))[0];
int t1 = ((int*)(src1 + i))[0];
((int*)(dst + i))[0] = t1;
((int*)(dst1 + i))[0] = t0;
}
}
for( ; i < size.width; i++ )
{
uchar t0 = src[i];
uchar t1 = src1[i];
dst[i] = t1;
dst1[i] = t0;
}
}
}
void flip( const Mat& src, Mat& dst, int flip_mode )
{
static FlipHorizFunc tab[] =
{
0,
flipHoriz_<uchar>, // 1
flipHoriz_<ushort>, // 2
flipHoriz_<Vec<uchar,3> >, // 3
flipHoriz_<int>, // 4
0,
flipHoriz_<Vec<ushort,3> >, // 6
0,
flipHoriz_<int64>, // 8
0, 0, 0,
flipHoriz_<Vec<int,3> >, // 12
0, 0, 0,
flipHoriz_<Vec<int64,2> >, // 16
0, 0, 0, 0, 0, 0, 0,
flipHoriz_<Vec<int64,3> >, // 24
0, 0, 0, 0, 0, 0, 0,
flipHoriz_<Vec<int64,4> > // 32
};
CV_Assert( src.dims <= 2 );
dst.create( src.size(), src.type() );
if( flip_mode == 0 )
flipVert( src, dst );
else
{
int esz = (int)src.elemSize();
CV_Assert( esz <= 32 );
FlipHorizFunc func = tab[esz];
CV_Assert( func != 0 );
if( flip_mode > 0 )
func( src, dst, false );
else if( src.data != dst.data )
func( src, dst, true );
else
{
func( dst, dst, false );
flipVert( dst, dst );
}
}
}
void repeat(const Mat& src, int ny, int nx, Mat& dst)
{
CV_Assert( src.dims <= 2 );
dst.create(src.rows*ny, src.cols*nx, src.type());
Size ssize = src.size(), dsize = dst.size();
int esz = (int)src.elemSize();
int x, y;
ssize.width *= esz; dsize.width *= esz;
for( y = 0; y < ssize.height; y++ )
{
for( x = 0; x < dsize.width; x += ssize.width )
memcpy( dst.data + y*dst.step + x, src.data + y*src.step, ssize.width );
}
for( ; y < dsize.height; y++ )
memcpy( dst.data + y*dst.step, dst.data + (y - ssize.height)*dst.step, dsize.width );
}
}
/* dst = src */
CV_IMPL void
cvCopy( const void* srcarr, void* dstarr, const void* maskarr )
{
if( CV_IS_SPARSE_MAT(srcarr) && CV_IS_SPARSE_MAT(dstarr))
{
CV_Assert( maskarr == 0 );
CvSparseMat* src1 = (CvSparseMat*)srcarr;
CvSparseMat* dst1 = (CvSparseMat*)dstarr;
CvSparseMatIterator iterator;
CvSparseNode* node;
dst1->dims = src1->dims;
memcpy( dst1->size, src1->size, src1->dims*sizeof(src1->size[0]));
dst1->valoffset = src1->valoffset;
dst1->idxoffset = src1->idxoffset;
cvClearSet( dst1->heap );
if( src1->heap->active_count >= dst1->hashsize*CV_SPARSE_HASH_RATIO )
{
cvFree( &dst1->hashtable );
dst1->hashsize = src1->hashsize;
dst1->hashtable =
(void**)cvAlloc( dst1->hashsize*sizeof(dst1->hashtable[0]));
}
memset( dst1->hashtable, 0, dst1->hashsize*sizeof(dst1->hashtable[0]));
for( node = cvInitSparseMatIterator( src1, &iterator );
node != 0; node = cvGetNextSparseNode( &iterator ))
{
CvSparseNode* node_copy = (CvSparseNode*)cvSetNew( dst1->heap );
int tabidx = node->hashval & (dst1->hashsize - 1);
CV_MEMCPY_AUTO( node_copy, node, dst1->heap->elem_size );
node_copy->next = (CvSparseNode*)dst1->hashtable[tabidx];
dst1->hashtable[tabidx] = node_copy;
}
return;
}
cv::Mat src = cv::cvarrToMat(srcarr, false, true, 1), dst = cv::cvarrToMat(dstarr, false, true, 1);
CV_Assert( src.depth() == dst.depth() && src.size() == dst.size() );
int coi1 = 0, coi2 = 0;
if( CV_IS_IMAGE(srcarr) )
coi1 = cvGetImageCOI((const IplImage*)srcarr);
if( CV_IS_IMAGE(dstarr) )
coi2 = cvGetImageCOI((const IplImage*)dstarr);
if( coi1 || coi2 )
{
CV_Assert( (coi1 != 0 || src.channels() == 1) &&
(coi2 != 0 || dst.channels() == 1) );
int pair[] = { std::max(coi1-1, 0), std::max(coi2-1, 0) };
cv::mixChannels( &src, 1, &dst, 1, pair, 1 );
return;
}
else
CV_Assert( src.channels() == dst.channels() );
if( !maskarr )
src.copyTo(dst);
else
src.copyTo(dst, cv::cvarrToMat(maskarr));
}
CV_IMPL void
cvSet( void* arr, CvScalar value, const void* maskarr )
{
cv::Mat m = cv::cvarrToMat(arr);
if( !maskarr )
m = value;
else
m.setTo(value, cv::cvarrToMat(maskarr));
}
CV_IMPL void
cvSetZero( CvArr* arr )
{
if( CV_IS_SPARSE_MAT(arr) )
{
CvSparseMat* mat1 = (CvSparseMat*)arr;
cvClearSet( mat1->heap );
if( mat1->hashtable )
memset( mat1->hashtable, 0, mat1->hashsize*sizeof(mat1->hashtable[0]));
return;
}
cv::Mat m = cv::cvarrToMat(arr);
m = cv::Scalar(0);
}
CV_IMPL void
cvFlip( const CvArr* srcarr, CvArr* dstarr, int flip_mode )
{
cv::Mat src = cv::cvarrToMat(srcarr);
cv::Mat dst;
if (!dstarr)
dst = src;
else
dst = cv::cvarrToMat(dstarr);
CV_Assert( src.type() == dst.type() && src.size() == dst.size() );
cv::flip( src, dst, flip_mode );
}
CV_IMPL void
cvRepeat( const CvArr* srcarr, CvArr* dstarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.type() == dst.type() &&
dst.rows % src.rows == 0 && dst.cols % src.cols == 0 );
cv::repeat(src, dst.rows/src.rows, dst.cols/src.cols, dst);
}
/* End of file. */