|
|
|
/* strti2.f -- translated by f2c (version 20061008).
|
|
|
|
You must link the resulting object file with libf2c:
|
|
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
|
|
-- in that order, at the end of the command line, as in
|
|
|
|
cc *.o -lf2c -lm
|
|
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
|
|
|
|
static integer c__1 = 1;
|
|
|
|
|
|
|
|
/* Subroutine */ int strti2_(char *uplo, char *diag, integer *n, real *a,
|
|
|
|
integer *lda, integer *info)
|
|
|
|
{
|
|
|
|
/* System generated locals */
|
|
|
|
integer a_dim1, a_offset, i__1, i__2;
|
|
|
|
|
|
|
|
/* Local variables */
|
|
|
|
integer j;
|
|
|
|
real ajj;
|
|
|
|
extern logical lsame_(char *, char *);
|
|
|
|
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
|
|
|
|
logical upper;
|
|
|
|
extern /* Subroutine */ int strmv_(char *, char *, char *, integer *,
|
|
|
|
real *, integer *, real *, integer *),
|
|
|
|
xerbla_(char *, integer *);
|
|
|
|
logical nounit;
|
|
|
|
|
|
|
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
|
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
|
|
/* November 2006 */
|
|
|
|
|
|
|
|
/* .. Scalar Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Array Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
|
|
|
|
/* Purpose */
|
|
|
|
/* ======= */
|
|
|
|
|
|
|
|
/* STRTI2 computes the inverse of a real upper or lower triangular */
|
|
|
|
/* matrix. */
|
|
|
|
|
|
|
|
/* This is the Level 2 BLAS version of the algorithm. */
|
|
|
|
|
|
|
|
/* Arguments */
|
|
|
|
/* ========= */
|
|
|
|
|
|
|
|
/* UPLO (input) CHARACTER*1 */
|
|
|
|
/* Specifies whether the matrix A is upper or lower triangular. */
|
|
|
|
/* = 'U': Upper triangular */
|
|
|
|
/* = 'L': Lower triangular */
|
|
|
|
|
|
|
|
/* DIAG (input) CHARACTER*1 */
|
|
|
|
/* Specifies whether or not the matrix A is unit triangular. */
|
|
|
|
/* = 'N': Non-unit triangular */
|
|
|
|
/* = 'U': Unit triangular */
|
|
|
|
|
|
|
|
/* N (input) INTEGER */
|
|
|
|
/* The order of the matrix A. N >= 0. */
|
|
|
|
|
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */
|
|
|
|
/* On entry, the triangular matrix A. If UPLO = 'U', the */
|
|
|
|
/* leading n by n upper triangular part of the array A contains */
|
|
|
|
/* the upper triangular matrix, and the strictly lower */
|
|
|
|
/* triangular part of A is not referenced. If UPLO = 'L', the */
|
|
|
|
/* leading n by n lower triangular part of the array A contains */
|
|
|
|
/* the lower triangular matrix, and the strictly upper */
|
|
|
|
/* triangular part of A is not referenced. If DIAG = 'U', the */
|
|
|
|
/* diagonal elements of A are also not referenced and are */
|
|
|
|
/* assumed to be 1. */
|
|
|
|
|
|
|
|
/* On exit, the (triangular) inverse of the original matrix, in */
|
|
|
|
/* the same storage format. */
|
|
|
|
|
|
|
|
/* LDA (input) INTEGER */
|
|
|
|
/* The leading dimension of the array A. LDA >= max(1,N). */
|
|
|
|
|
|
|
|
/* INFO (output) INTEGER */
|
|
|
|
/* = 0: successful exit */
|
|
|
|
/* < 0: if INFO = -k, the k-th argument had an illegal value */
|
|
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
|
|
/* .. Parameters .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Local Scalars .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Subroutines .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Intrinsic Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Executable Statements .. */
|
|
|
|
|
|
|
|
/* Test the input parameters. */
|
|
|
|
|
|
|
|
/* Parameter adjustments */
|
|
|
|
a_dim1 = *lda;
|
|
|
|
a_offset = 1 + a_dim1;
|
|
|
|
a -= a_offset;
|
|
|
|
|
|
|
|
/* Function Body */
|
|
|
|
*info = 0;
|
|
|
|
upper = lsame_(uplo, "U");
|
|
|
|
nounit = lsame_(diag, "N");
|
|
|
|
if (! upper && ! lsame_(uplo, "L")) {
|
|
|
|
*info = -1;
|
|
|
|
} else if (! nounit && ! lsame_(diag, "U")) {
|
|
|
|
*info = -2;
|
|
|
|
} else if (*n < 0) {
|
|
|
|
*info = -3;
|
|
|
|
} else if (*lda < max(1,*n)) {
|
|
|
|
*info = -5;
|
|
|
|
}
|
|
|
|
if (*info != 0) {
|
|
|
|
i__1 = -(*info);
|
|
|
|
xerbla_("STRTI2", &i__1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (upper) {
|
|
|
|
|
|
|
|
/* Compute inverse of upper triangular matrix. */
|
|
|
|
|
|
|
|
i__1 = *n;
|
|
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
if (nounit) {
|
|
|
|
a[j + j * a_dim1] = 1.f / a[j + j * a_dim1];
|
|
|
|
ajj = -a[j + j * a_dim1];
|
|
|
|
} else {
|
|
|
|
ajj = -1.f;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Compute elements 1:j-1 of j-th column. */
|
|
|
|
|
|
|
|
i__2 = j - 1;
|
|
|
|
strmv_("Upper", "No transpose", diag, &i__2, &a[a_offset], lda, &
|
|
|
|
a[j * a_dim1 + 1], &c__1);
|
|
|
|
i__2 = j - 1;
|
|
|
|
sscal_(&i__2, &ajj, &a[j * a_dim1 + 1], &c__1);
|
|
|
|
/* L10: */
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
|
|
|
|
/* Compute inverse of lower triangular matrix. */
|
|
|
|
|
|
|
|
for (j = *n; j >= 1; --j) {
|
|
|
|
if (nounit) {
|
|
|
|
a[j + j * a_dim1] = 1.f / a[j + j * a_dim1];
|
|
|
|
ajj = -a[j + j * a_dim1];
|
|
|
|
} else {
|
|
|
|
ajj = -1.f;
|
|
|
|
}
|
|
|
|
if (j < *n) {
|
|
|
|
|
|
|
|
/* Compute elements j+1:n of j-th column. */
|
|
|
|
|
|
|
|
i__1 = *n - j;
|
|
|
|
strmv_("Lower", "No transpose", diag, &i__1, &a[j + 1 + (j +
|
|
|
|
1) * a_dim1], lda, &a[j + 1 + j * a_dim1], &c__1);
|
|
|
|
i__1 = *n - j;
|
|
|
|
sscal_(&i__1, &ajj, &a[j + 1 + j * a_dim1], &c__1);
|
|
|
|
}
|
|
|
|
/* L20: */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* End of STRTI2 */
|
|
|
|
|
|
|
|
} /* strti2_ */
|