|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
//
|
|
|
|
// Copyright (C) 2017, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
|
|
|
#include "perf_precomp.hpp"
|
|
|
|
#include "opencv2/core/ocl.hpp"
|
|
|
|
|
|
|
|
#include "opencv2/dnn/shape_utils.hpp"
|
|
|
|
|
|
|
|
#include "../test/test_common.hpp"
|
|
|
|
|
|
|
|
namespace opencv_test {
|
|
|
|
|
|
|
|
class DNNTestNetwork : public ::perf::TestBaseWithParam< tuple<Backend, Target> >
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
dnn::Backend backend;
|
|
|
|
dnn::Target target;
|
|
|
|
|
|
|
|
dnn::Net net;
|
|
|
|
|
|
|
|
DNNTestNetwork()
|
|
|
|
{
|
|
|
|
backend = (dnn::Backend)(int)get<0>(GetParam());
|
|
|
|
target = (dnn::Target)(int)get<1>(GetParam());
|
|
|
|
}
|
|
|
|
|
|
|
|
void processNet(std::string weights, std::string proto, std::string halide_scheduler,
|
|
|
|
const Mat& input, const std::string& outputLayer = "")
|
|
|
|
{
|
|
|
|
randu(input, 0.0f, 1.0f);
|
|
|
|
|
|
|
|
weights = findDataFile(weights, false);
|
|
|
|
if (!proto.empty())
|
|
|
|
proto = findDataFile(proto);
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
{
|
|
|
|
if (halide_scheduler == "disabled")
|
|
|
|
throw cvtest::SkipTestException("Halide test is disabled");
|
|
|
|
if (!halide_scheduler.empty())
|
|
|
|
halide_scheduler = findDataFile(std::string("dnn/halide_scheduler_") + (target == DNN_TARGET_OPENCL ? "opencl_" : "") + halide_scheduler, true);
|
|
|
|
}
|
|
|
|
net = readNet(proto, weights);
|
|
|
|
net.setInput(blobFromImage(input, 1.0, Size(), Scalar(), false));
|
|
|
|
net.setPreferableBackend(backend);
|
|
|
|
net.setPreferableTarget(target);
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
{
|
|
|
|
net.setHalideScheduler(halide_scheduler);
|
|
|
|
}
|
|
|
|
|
|
|
|
MatShape netInputShape = shape(1, 3, input.rows, input.cols);
|
|
|
|
size_t weightsMemory = 0, blobsMemory = 0;
|
|
|
|
net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory);
|
|
|
|
int64 flops = net.getFLOPS(netInputShape);
|
|
|
|
CV_Assert(flops > 0);
|
|
|
|
|
|
|
|
net.forward(outputLayer); // warmup
|
|
|
|
|
|
|
|
std::cout << "Memory consumption:" << std::endl;
|
|
|
|
std::cout << " Weights(parameters): " << divUp(weightsMemory, 1u<<20) << " Mb" << std::endl;
|
|
|
|
std::cout << " Blobs: " << divUp(blobsMemory, 1u<<20) << " Mb" << std::endl;
|
|
|
|
std::cout << "Calculation complexity: " << flops * 1e-9 << " GFlops" << std::endl;
|
|
|
|
|
|
|
|
PERF_SAMPLE_BEGIN()
|
|
|
|
net.forward();
|
|
|
|
PERF_SAMPLE_END()
|
|
|
|
|
|
|
|
SANITY_CHECK_NOTHING();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, AlexNet)
|
|
|
|
{
|
|
|
|
processNet("dnn/bvlc_alexnet.caffemodel", "dnn/bvlc_alexnet.prototxt",
|
|
|
|
"alexnet.yml", Mat(cv::Size(227, 227), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, GoogLeNet)
|
|
|
|
{
|
|
|
|
processNet("dnn/bvlc_googlenet.caffemodel", "dnn/bvlc_googlenet.prototxt",
|
|
|
|
"", Mat(cv::Size(224, 224), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, ResNet_50)
|
|
|
|
{
|
|
|
|
processNet("dnn/ResNet-50-model.caffemodel", "dnn/ResNet-50-deploy.prototxt",
|
|
|
|
"resnet_50.yml", Mat(cv::Size(224, 224), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, SqueezeNet_v1_1)
|
|
|
|
{
|
|
|
|
processNet("dnn/squeezenet_v1.1.caffemodel", "dnn/squeezenet_v1.1.prototxt",
|
|
|
|
"squeezenet_v1_1.yml", Mat(cv::Size(227, 227), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_5h)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) throw SkipTestException("");
|
|
|
|
processNet("dnn/tensorflow_inception_graph.pb", "",
|
|
|
|
"inception_5h.yml",
|
|
|
|
Mat(cv::Size(224, 224), CV_32FC3), "softmax2");
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, ENet)
|
|
|
|
{
|
|
|
|
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU) ||
|
|
|
|
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
|
|
|
|
throw SkipTestException("");
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
|
|
|
throw SkipTestException("");
|
|
|
|
#endif
|
|
|
|
processNet("dnn/Enet-model-best.net", "", "enet.yml",
|
|
|
|
Mat(cv::Size(512, 256), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, SSD)
|
|
|
|
{
|
|
|
|
processNet("dnn/VGG_ILSVRC2016_SSD_300x300_iter_440000.caffemodel", "dnn/ssd_vgg16.prototxt", "disabled",
|
|
|
|
Mat(cv::Size(300, 300), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, OpenFace)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD)
|
|
|
|
throw SkipTestException("");
|
|
|
|
#endif
|
|
|
|
processNet("dnn/openface_nn4.small2.v1.t7", "", "",
|
|
|
|
Mat(cv::Size(96, 96), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_Caffe)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt", "",
|
|
|
|
Mat(cv::Size(300, 300), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "ssd_mobilenet_v1_coco_2017_11_17.pbtxt", "",
|
|
|
|
Mat(cv::Size(300, 300), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "ssd_mobilenet_v2_coco_2018_03_29.pbtxt", "",
|
|
|
|
Mat(cv::Size(300, 300), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, DenseNet_121)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", "",
|
|
|
|
Mat(cv::Size(224, 224), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE ||
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target == DNN_TARGET_MYRIAD))
|
|
|
|
throw SkipTestException("");
|
|
|
|
// The same .caffemodel but modified .prototxt
|
|
|
|
// See https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/pose/poseParameters.cpp
|
|
|
|
processNet("dnn/openpose_pose_mpi.caffemodel", "dnn/openpose_pose_mpi_faster_4_stages.prototxt", "",
|
|
|
|
Mat(cv::Size(368, 368), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, opencv_face_detector)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", "",
|
|
|
|
Mat(cv::Size(300, 300), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_v2_SSD_TensorFlow)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "ssd_inception_v2_coco_2017_11_17.pbtxt", "",
|
|
|
|
Mat(cv::Size(300, 300), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv3)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
|
|
|
#endif
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) // nGraph compilation failure
|
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
|
|
throw SkipTestException("");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
|
|
cvtColor(sample, sample, COLOR_BGR2RGB);
|
|
|
|
Mat inp;
|
|
|
|
sample.convertTo(inp, CV_32FC3, 1.0f / 255, 0);
|
|
|
|
processNet("dnn/yolov3.weights", "dnn/yolov3.cfg", "", inp);
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv4)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
if (target == DNN_TARGET_MYRIAD) // not enough resources
|
|
|
|
throw SkipTestException("");
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2020040000) // nGraph compilation failure
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL)
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_OPENCL_FP16)
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2020.4");
|
|
|
|
#endif
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
|
|
cvtColor(sample, sample, COLOR_BGR2RGB);
|
|
|
|
Mat inp;
|
|
|
|
sample.convertTo(inp, CV_32FC3, 1.0f / 255, 0);
|
|
|
|
processNet("dnn/yolov4.weights", "dnn/yolov4.cfg", "", inp);
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, YOLOv4_tiny)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000) // nGraph compilation failure
|
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
|
|
throw SkipTestException("");
|
|
|
|
#endif
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
|
|
cvtColor(sample, sample, COLOR_BGR2RGB);
|
|
|
|
Mat inp;
|
|
|
|
sample.convertTo(inp, CV_32FC3, 1.0f / 255, 0);
|
|
|
|
processNet("dnn/yolov4-tiny.weights", "dnn/yolov4-tiny.cfg", "", inp);
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, EAST_text_detection)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
processNet("dnn/frozen_east_text_detection.pb", "", "", Mat(cv::Size(320, 320), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, FastNeuralStyle_eccv16)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE)
|
|
|
|
throw SkipTestException("");
|
|
|
|
processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", "", Mat(cv::Size(320, 240), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, Inception_v2_Faster_RCNN)
|
|
|
|
{
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019010000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2019R1");
|
|
|
|
#endif
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2019020000)
|
|
|
|
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2019R2");
|
|
|
|
#endif
|
|
|
|
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2021010000)
|
|
|
|
if (target == DNN_TARGET_MYRIAD)
|
|
|
|
throw SkipTestException("Test is disabled in OpenVINO 2021.1+ / MYRIAD");
|
|
|
|
#endif
|
|
|
|
if (backend == DNN_BACKEND_HALIDE ||
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && target != DNN_TARGET_CPU) ||
|
|
|
|
(backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16))
|
|
|
|
throw SkipTestException("");
|
|
|
|
processNet("dnn/faster_rcnn_inception_v2_coco_2018_01_28.pb",
|
|
|
|
"dnn/faster_rcnn_inception_v2_coco_2018_01_28.pbtxt", "",
|
|
|
|
Mat(cv::Size(800, 600), CV_32FC3));
|
|
|
|
}
|
|
|
|
|
|
|
|
PERF_TEST_P_(DNNTestNetwork, EfficientDet)
|
|
|
|
{
|
|
|
|
if (backend == DNN_BACKEND_HALIDE || target != DNN_TARGET_CPU)
|
|
|
|
throw SkipTestException("");
|
|
|
|
Mat sample = imread(findDataFile("dnn/dog416.png"));
|
|
|
|
resize(sample, sample, Size(512, 512));
|
|
|
|
Mat inp;
|
|
|
|
sample.convertTo(inp, CV_32FC3, 1.0/255);
|
|
|
|
processNet("dnn/efficientdet-d0.pb", "dnn/efficientdet-d0.pbtxt", "", inp);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(/*nothing*/, DNNTestNetwork, dnnBackendsAndTargets());
|
|
|
|
|
|
|
|
} // namespace
|