mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
88 lines
3.4 KiB
88 lines
3.4 KiB
7 years ago
|
import numpy as np
|
||
|
import argparse
|
||
|
|
||
|
try:
|
||
|
import cv2 as cv
|
||
|
except ImportError:
|
||
|
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
|
||
|
'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
|
||
|
|
||
|
inWidth = 300
|
||
|
inHeight = 300
|
||
|
WHRatio = inWidth / float(inHeight)
|
||
|
inScaleFactor = 0.007843
|
||
|
meanVal = 127.5
|
||
|
|
||
|
classNames = ('background',
|
||
|
'aeroplane', 'bicycle', 'bird', 'boat',
|
||
|
'bottle', 'bus', 'car', 'cat', 'chair',
|
||
|
'cow', 'diningtable', 'dog', 'horse',
|
||
|
'motorbike', 'person', 'pottedplant',
|
||
|
'sheep', 'sofa', 'train', 'tvmonitor')
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--video", help="path to video file. If empty, camera's stream will be used")
|
||
|
parser.add_argument("--prototxt", default="MobileNetSSD_300x300.prototxt",
|
||
|
help="path to caffe prototxt")
|
||
|
parser.add_argument("-c", "--caffemodel", help="path to caffemodel file, download it here: "
|
||
|
"https://github.com/chuanqi305/MobileNet-SSD/blob/master/MobileNetSSD_train.caffemodel")
|
||
|
parser.add_argument("--thr", default=0.2, help="confidence threshold to filter out weak detections")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
net = dnn.readNetFromCaffe(args.prototxt, args.caffemodel)
|
||
|
|
||
|
if len(args.video):
|
||
|
cap = cv2.VideoCapture(args.video)
|
||
|
else:
|
||
|
cap = cv2.VideoCapture(0)
|
||
|
|
||
|
while True:
|
||
|
# Capture frame-by-frame
|
||
|
ret, frame = cap.read()
|
||
|
blob = dnn.blobFromImage(frame, inScaleFactor, (inWidth, inHeight), meanVal)
|
||
|
net.setInput(blob)
|
||
|
detections = net.forward()
|
||
|
|
||
|
cols = frame.shape[1]
|
||
|
rows = frame.shape[0]
|
||
|
|
||
|
if cols / float(rows) > WHRatio:
|
||
|
cropSize = (int(rows * WHRatio), rows)
|
||
|
else:
|
||
|
cropSize = (cols, int(cols / WHRatio))
|
||
|
|
||
|
y1 = (rows - cropSize[1]) / 2
|
||
|
y2 = y1 + cropSize[1]
|
||
|
x1 = (cols - cropSize[0]) / 2
|
||
|
x2 = x1 + cropSize[0]
|
||
|
frame = frame[y1:y2, x1:x2]
|
||
|
|
||
|
cols = frame.shape[1]
|
||
|
rows = frame.shape[0]
|
||
|
|
||
|
for i in range(detections.shape[2]):
|
||
|
confidence = detections[0, 0, i, 2]
|
||
|
if confidence > args.thr:
|
||
|
class_id = int(detections[0, 0, i, 1])
|
||
|
|
||
|
xLeftBottom = int(detections[0, 0, i, 3] * cols)
|
||
|
yLeftBottom = int(detections[0, 0, i, 4] * rows)
|
||
|
xRightTop = int(detections[0, 0, i, 5] * cols)
|
||
|
yRightTop = int(detections[0, 0, i, 6] * rows)
|
||
|
|
||
|
cv2.rectangle(frame, (xLeftBottom, yLeftBottom), (xRightTop, yRightTop),
|
||
|
(0, 255, 0))
|
||
|
label = classNames[class_id] + ": " + str(confidence)
|
||
|
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||
|
|
||
|
cv2.rectangle(frame, (xLeftBottom, yLeftBottom - labelSize[1]),
|
||
|
(xLeftBottom + labelSize[0], yLeftBottom + baseLine),
|
||
|
(255, 255, 255), cv2.FILLED)
|
||
|
cv2.putText(frame, label, (xLeftBottom, yLeftBottom),
|
||
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
|
||
|
|
||
|
cv2.imshow("detections", frame)
|
||
|
if cv2.waitKey(1) >= 0:
|
||
|
break
|