mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
357 lines
12 KiB
357 lines
12 KiB
14 years ago
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
13 years ago
|
#include "opencv2/video/tracking.hpp"
|
||
14 years ago
|
|
||
|
#include <string>
|
||
|
#include <iostream>
|
||
|
#include <fstream>
|
||
|
#include <iterator>
|
||
|
#include <limits>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
|
||
|
class CV_OptFlowTest : public cvtest::BaseTest
|
||
|
{
|
||
|
public:
|
||
|
CV_OptFlowTest();
|
||
|
~CV_OptFlowTest();
|
||
|
protected:
|
||
|
void run(int);
|
||
|
|
||
|
bool runDense(const Point& shift = Point(3, 0));
|
||
|
bool runSparse();
|
||
|
};
|
||
|
|
||
|
CV_OptFlowTest::CV_OptFlowTest() {}
|
||
|
CV_OptFlowTest::~CV_OptFlowTest() {}
|
||
|
|
||
|
|
||
|
Mat copnvert2flow(const Mat& velx, const Mat& vely)
|
||
|
{
|
||
|
Mat flow(velx.size(), CV_32FC2);
|
||
|
for(int y = 0 ; y < flow.rows; ++y)
|
||
|
for(int x = 0 ; x < flow.cols; ++x)
|
||
|
flow.at<Point2f>(y, x) = Point2f(velx.at<float>(y, x), vely.at<float>(y, x));
|
||
|
return flow;
|
||
|
}
|
||
|
|
||
|
void calcOpticalFlowLK( const Mat& prev, const Mat& curr, Size winSize, Mat& flow )
|
||
|
{
|
||
|
Mat velx(prev.size(), CV_32F), vely(prev.size(), CV_32F);
|
||
|
CvMat cvvelx = velx; CvMat cvvely = vely;
|
||
|
CvMat cvprev = prev; CvMat cvcurr = curr;
|
||
|
cvCalcOpticalFlowLK( &cvprev, &cvcurr, winSize, &cvvelx, &cvvely );
|
||
|
flow = copnvert2flow(velx, vely);
|
||
|
}
|
||
|
|
||
|
void calcOpticalFlowBM( const Mat& prev, const Mat& curr, Size bSize, Size shiftSize, Size maxRange, int usePrevious, Mat& flow )
|
||
|
{
|
||
|
Size sz((curr.cols - bSize.width)/shiftSize.width, (curr.rows - bSize.height)/shiftSize.height);
|
||
|
Mat velx(sz, CV_32F), vely(sz, CV_32F);
|
||
|
|
||
|
CvMat cvvelx = velx; CvMat cvvely = vely;
|
||
|
CvMat cvprev = prev; CvMat cvcurr = curr;
|
||
|
cvCalcOpticalFlowBM( &cvprev, &cvcurr, bSize, shiftSize, maxRange, usePrevious, &cvvelx, &cvvely);
|
||
|
flow = copnvert2flow(velx, vely);
|
||
|
}
|
||
|
|
||
|
void calcOpticalFlowHS( const Mat& prev, const Mat& curr, int usePrevious, double lambda, TermCriteria criteria, Mat& flow)
|
||
|
{
|
||
|
Mat velx(prev.size(), CV_32F), vely(prev.size(), CV_32F);
|
||
|
CvMat cvvelx = velx; CvMat cvvely = vely;
|
||
|
CvMat cvprev = prev; CvMat cvcurr = curr;
|
||
|
cvCalcOpticalFlowHS( &cvprev, &cvcurr, usePrevious, &cvvelx, &cvvely, lambda, criteria );
|
||
|
flow = copnvert2flow(velx, vely);
|
||
|
}
|
||
|
|
||
|
void calcAffineFlowPyrLK( const Mat& prev, const Mat& curr,
|
||
|
const vector<Point2f>& prev_features, vector<Point2f>& curr_features,
|
||
|
vector<uchar>& status, vector<float>& track_error, vector<float>& matrices,
|
||
|
TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,30, 0.01),
|
||
|
Size win_size = Size(15, 15), int level = 3, int flags = 0)
|
||
|
{
|
||
|
CvMat cvprev = prev;
|
||
|
CvMat cvcurr = curr;
|
||
|
|
||
|
size_t count = prev_features.size();
|
||
|
curr_features.resize(count);
|
||
|
status.resize(count);
|
||
|
track_error.resize(count);
|
||
|
matrices.resize(count * 6);
|
||
|
|
||
|
cvCalcAffineFlowPyrLK( &cvprev, &cvcurr, 0, 0,
|
||
|
(const CvPoint2D32f*)&prev_features[0], (CvPoint2D32f*)&curr_features[0], &matrices[0],
|
||
|
(int)count, win_size, level, (char*)&status[0], &track_error[0], criteria, flags );
|
||
|
}
|
||
|
|
||
|
double showFlowAndCalcError(const string& name, const Mat& gray, const Mat& flow,
|
||
|
const Rect& where, const Point& d,
|
||
|
bool showImages = false, bool writeError = false)
|
||
|
{
|
||
|
const int mult = 16;
|
||
|
|
||
|
if (showImages)
|
||
|
{
|
||
|
Mat tmp, cflow;
|
||
|
resize(gray, tmp, gray.size() * mult, 0, 0, INTER_NEAREST);
|
||
|
cvtColor(tmp, cflow, CV_GRAY2BGR);
|
||
|
|
||
|
const float m2 = 0.3f;
|
||
|
const float minVel = 0.1f;
|
||
|
|
||
|
for(int y = 0; y < flow.rows; ++y)
|
||
|
for(int x = 0; x < flow.cols; ++x)
|
||
|
{
|
||
|
Point2f f = flow.at<Point2f>(y, x);
|
||
|
|
||
|
if (f.x * f.x + f.y * f.y > minVel * minVel)
|
||
|
{
|
||
|
Point p1 = Point(x, y) * mult;
|
||
|
Point p2 = Point(cvRound((x + f.x*m2) * mult), cvRound((y + f.y*m2) * mult));
|
||
|
|
||
|
line(cflow, p1, p2, CV_RGB(0, 255, 0));
|
||
|
circle(cflow, Point(x, y) * mult, 2, CV_RGB(255, 0, 0));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
rectangle(cflow, (where.tl() + d) * mult, (where.br() + d - Point(1,1)) * mult, CV_RGB(0, 0, 255));
|
||
|
namedWindow(name, 1); imshow(name, cflow);
|
||
|
}
|
||
|
|
||
|
double angle = atan2((float)d.y, (float)d.x);
|
||
|
double error = 0;
|
||
|
|
||
|
bool all = true;
|
||
|
Mat inner = flow(where);
|
||
|
for(int y = 0; y < inner.rows; ++y)
|
||
|
for(int x = 0; x < inner.cols; ++x)
|
||
|
{
|
||
|
const Point2f f = inner.at<Point2f>(y, x);
|
||
|
|
||
|
if (f.x == 0 && f.y == 0)
|
||
|
continue;
|
||
|
|
||
|
all = false;
|
||
|
|
||
|
double a = atan2(f.y, f.x);
|
||
|
error += fabs(angle - a);
|
||
|
}
|
||
|
double res = all ? numeric_limits<double>::max() : error / (inner.cols * inner.rows);
|
||
|
|
||
|
if (writeError)
|
||
|
cout << "Error " + name << " = " << res << endl;
|
||
|
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
|
||
|
Mat generateImage(const Size& sz, bool doBlur = true)
|
||
|
{
|
||
|
RNG rng;
|
||
|
Mat mat(sz, CV_8U);
|
||
|
mat = Scalar(0);
|
||
|
for(int y = 0; y < mat.rows; ++y)
|
||
|
for(int x = 0; x < mat.cols; ++x)
|
||
|
mat.at<uchar>(y, x) = (uchar)rng;
|
||
|
if (doBlur)
|
||
|
blur(mat, mat, Size(3, 3));
|
||
|
return mat;
|
||
|
}
|
||
|
|
||
|
Mat generateSample(const Size& sz)
|
||
|
{
|
||
|
Mat smpl(sz, CV_8U);
|
||
|
smpl = Scalar(0);
|
||
|
Point sc(smpl.cols/2, smpl.rows/2);
|
||
|
rectangle(smpl, Point(0,0), sc - Point(1,1), Scalar(255), CV_FILLED);
|
||
|
rectangle(smpl, sc, Point(smpl.cols, smpl.rows), Scalar(255), CV_FILLED);
|
||
|
return smpl;
|
||
|
}
|
||
|
|
||
|
bool CV_OptFlowTest::runDense(const Point& d)
|
||
|
{
|
||
|
Size matSize(40, 40);
|
||
|
Size movSize(8, 8);
|
||
|
|
||
|
Mat smpl = generateSample(movSize);
|
||
|
Mat prev = generateImage(matSize);
|
||
|
Mat curr = prev.clone();
|
||
|
|
||
|
Rect rect(Point(prev.cols/2, prev.rows/2) - Point(movSize.width/2, movSize.height/2), movSize);
|
||
|
|
||
|
Mat flowLK, flowBM, flowHS, flowFB, flowFB_G, flowBM_received, m1;
|
||
|
|
||
|
m1 = prev(rect); smpl.copyTo(m1);
|
||
|
m1 = curr(Rect(rect.tl() + d, rect.br() + d)); smpl.copyTo(m1);
|
||
|
|
||
|
calcOpticalFlowLK( prev, curr, Size(15, 15), flowLK);
|
||
|
calcOpticalFlowBM( prev, curr, Size(15, 15), Size(1, 1), Size(15, 15), 0, flowBM_received);
|
||
|
calcOpticalFlowHS( prev, curr, 0, 5, TermCriteria(TermCriteria::MAX_ITER, 400, 0), flowHS);
|
||
|
calcOpticalFlowFarneback( prev, curr, flowFB, 0.5, 3, std::max(d.x, d.y) + 10, 100, 6, 2, 0);
|
||
|
calcOpticalFlowFarneback( prev, curr, flowFB_G, 0.5, 3, std::max(d.x, d.y) + 10, 100, 6, 2, OPTFLOW_FARNEBACK_GAUSSIAN);
|
||
|
|
||
|
flowBM.create(prev.size(), CV_32FC2);
|
||
|
flowBM = Scalar(0);
|
||
|
Point origin((flowBM.cols - flowBM_received.cols)/2, (flowBM.rows - flowBM_received.rows)/2);
|
||
|
Mat wcp = flowBM(Rect(origin, flowBM_received.size()));
|
||
|
flowBM_received.copyTo(wcp);
|
||
|
|
||
|
double errorLK = showFlowAndCalcError("LK", prev, flowLK, rect, d);
|
||
|
double errorBM = showFlowAndCalcError("BM", prev, flowBM, rect, d);
|
||
|
double errorFB = showFlowAndCalcError("FB", prev, flowFB, rect, d);
|
||
|
double errorFBG = showFlowAndCalcError("FBG", prev, flowFB_G, rect, d);
|
||
|
double errorHS = showFlowAndCalcError("HS", prev, flowHS, rect, d); (void)errorHS;
|
||
|
//waitKey();
|
||
|
|
||
|
const double thres = 0.2;
|
||
|
if (errorLK > thres || errorBM > thres || errorFB > thres || errorFBG > thres /*|| errorHS > thres */)
|
||
|
{
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
bool CV_OptFlowTest::runSparse()
|
||
|
{
|
||
|
Mat prev = imread(string(ts->get_data_path()) + "optflow/rock_1.bmp", 0);
|
||
|
Mat next = imread(string(ts->get_data_path()) + "optflow/rock_2.bmp", 0);
|
||
|
|
||
|
if (prev.empty() || next.empty())
|
||
|
{
|
||
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
Mat cprev, cnext;
|
||
|
cvtColor(prev, cprev, CV_GRAY2BGR);
|
||
|
cvtColor(next, cnext, CV_GRAY2BGR);
|
||
|
|
||
|
vector<Point2f> prev_pts;
|
||
|
vector<Point2f> next_ptsOpt;
|
||
|
vector<Point2f> next_ptsAff;
|
||
|
vector<uchar> status_Opt;
|
||
|
vector<uchar> status_Aff;
|
||
|
vector<float> error;
|
||
|
vector<float> matrices;
|
||
|
|
||
|
Size netSize(10, 10);
|
||
|
Point2f center = Point(prev.cols/2, prev.rows/2);
|
||
|
|
||
|
for(int i = 0 ; i < netSize.width; ++i)
|
||
|
for(int j = 0 ; j < netSize.width; ++j)
|
||
|
{
|
||
|
Point2f p(i * float(prev.cols)/netSize.width, j * float(prev.rows)/netSize.height);
|
||
|
prev_pts.push_back((p - center) * 0.5f + center);
|
||
|
}
|
||
|
|
||
|
calcOpticalFlowPyrLK( prev, next, prev_pts, next_ptsOpt, status_Opt, error );
|
||
|
calcAffineFlowPyrLK ( prev, next, prev_pts, next_ptsAff, status_Aff, error, matrices);
|
||
|
|
||
|
const double expected_shift = 25;
|
||
|
const double thres = 1;
|
||
|
for(size_t i = 0; i < prev_pts.size(); ++i)
|
||
|
{
|
||
|
circle(cprev, prev_pts[i], 2, CV_RGB(255, 0, 0));
|
||
|
|
||
|
if (status_Opt[i])
|
||
|
{
|
||
|
circle(cnext, next_ptsOpt[i], 2, CV_RGB(0, 0, 255));
|
||
|
Point2f shift = prev_pts[i] - next_ptsOpt[i];
|
||
|
|
||
|
double n = sqrt(shift.ddot(shift));
|
||
|
if (fabs(n - expected_shift) > thres)
|
||
|
{
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (status_Aff[i])
|
||
|
{
|
||
|
circle(cnext, next_ptsAff[i], 4, CV_RGB(0, 255, 0));
|
||
|
Point2f shift = prev_pts[i] - next_ptsAff[i];
|
||
|
|
||
|
double n = sqrt(shift.ddot(shift));
|
||
|
if (fabs(n - expected_shift) > thres)
|
||
|
{
|
||
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/*namedWindow("P"); imshow("P", cprev);
|
||
|
namedWindow("N"); imshow("N", cnext);
|
||
|
waitKey();*/
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
void CV_OptFlowTest::run( int /* start_from */)
|
||
|
{
|
||
|
|
||
|
if (!runDense(Point(3, 0)))
|
||
|
return;
|
||
|
|
||
|
if (!runDense(Point(0, 3)))
|
||
|
return;
|
||
|
|
||
|
//if (!runDense(Point(3, 3))) return; //probably LK works incorrectly in this case.
|
||
|
|
||
|
if (!runSparse())
|
||
|
return;
|
||
|
|
||
|
ts->set_failed_test_info(cvtest::TS::OK);
|
||
|
}
|
||
|
|
||
|
|
||
|
TEST(Video_OpticalFlow, accuracy) { CV_OptFlowTest test; test.safe_run(); }
|
||
|
|
||
|
|