Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

120 lines
4.5 KiB

#!/usr/bin/env python
import numpy as np
import cv2 as cv
import os
from tests_common import NewOpenCVTests
class test_gapi_infer(NewOpenCVTests):
def test_getAvailableTargets(self):
targets = cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_OPENCV)
self.assertTrue(cv.dnn.DNN_TARGET_CPU in targets)
def test_age_gender_infer(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/age-gender-recognition-retail-0013/FP32/age-gender-recognition-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
img_path = self.find_file('cv/face/david2.jpg', [os.environ.get('OPENCV_TEST_DATA_PATH')])
device_id = 'CPU'
img = cv.resize(cv.imread(img_path), (62,62))
# OpenCV DNN
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
blob = cv.dnn.blobFromImage(img)
net.setInput(blob)
dnn_age, dnn_gender = net.forward(net.getUnconnectedOutLayersNames())
# OpenCV G-API
g_in = cv.GMat()
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
outputs = cv.gapi.infer("net", inputs)
age_g = outputs.at("age_conv3")
gender_g = outputs.at("prob")
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(age_g, gender_g))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_age, gapi_gender = comp.apply(cv.gin(img), args=cv.compile_args(cv.gapi.networks(pp)))
# Check
self.assertEqual(0.0, cv.norm(dnn_gender, gapi_gender, cv.NORM_INF))
self.assertEqual(0.0, cv.norm(dnn_age, gapi_age, cv.NORM_INF))
def test_person_detection_retail_0013(self):
# NB: Check IE
if not cv.dnn.DNN_TARGET_CPU in cv.dnn.getAvailableTargets(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE):
return
root_path = '/omz_intel_models/intel/person-detection-retail-0013/FP32/person-detection-retail-0013'
model_path = self.find_file(root_path + '.xml', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
weights_path = self.find_file(root_path + '.bin', [os.environ.get('OPENCV_DNN_TEST_DATA_PATH')])
img_path = self.find_file('gpu/lbpcascade/er.png', [os.environ.get('OPENCV_TEST_DATA_PATH')])
device_id = 'CPU'
img = cv.resize(cv.imread(img_path), (544, 320))
# OpenCV DNN
net = cv.dnn.readNetFromModelOptimizer(model_path, weights_path)
net.setPreferableBackend(cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
net.setPreferableTarget(cv.dnn.DNN_TARGET_CPU)
blob = cv.dnn.blobFromImage(img)
def parseSSD(detections, size):
h, w = size
bboxes = []
detections = detections.reshape(-1, 7)
for sample_id, class_id, confidence, xmin, ymin, xmax, ymax in detections:
if confidence >= 0.5:
x = int(xmin * w)
y = int(ymin * h)
width = int(xmax * w - x)
height = int(ymax * h - y)
bboxes.append((x, y, width, height))
return bboxes
net.setInput(blob)
dnn_detections = net.forward()
dnn_boxes = parseSSD(np.array(dnn_detections), img.shape[:2])
# OpenCV G-API
g_in = cv.GMat()
inputs = cv.GInferInputs()
inputs.setInput('data', g_in)
g_sz = cv.gapi.streaming.size(g_in)
outputs = cv.gapi.infer("net", inputs)
detections = outputs.at("detection_out")
bboxes = cv.gapi.parseSSD(detections, g_sz, 0.5, False, False)
comp = cv.GComputation(cv.GIn(g_in), cv.GOut(bboxes))
pp = cv.gapi.ie.params("net", model_path, weights_path, device_id)
gapi_boxes = comp.apply(cv.gin(img.astype(np.float32)),
args=cv.compile_args(cv.gapi.networks(pp)))
# Comparison
self.assertEqual(0.0, cv.norm(np.array(dnn_boxes).flatten(),
np.array(gapi_boxes).flatten(),
cv.NORM_INF))
if __name__ == '__main__':
NewOpenCVTests.bootstrap()