mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
132 lines
4.8 KiB
132 lines
4.8 KiB
3 years ago
|
#include <opencv2/dnn.hpp>
|
||
|
#include <opencv2/imgproc.hpp>
|
||
|
#include <opencv2/highgui.hpp>
|
||
|
#include <opencv2/objdetect.hpp>
|
||
|
|
||
|
#include <iostream>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
|
||
|
static Mat visualize(Mat input, Mat faces, int thickness=2)
|
||
|
{
|
||
|
Mat output = input.clone();
|
||
|
for (int i = 0; i < faces.rows; i++)
|
||
|
{
|
||
|
// Print results
|
||
|
cout << "Face " << i
|
||
|
<< ", top-left coordinates: (" << faces.at<float>(i, 0) << ", " << faces.at<float>(i, 1) << "), "
|
||
|
<< "box width: " << faces.at<float>(i, 2) << ", box height: " << faces.at<float>(i, 3) << ", "
|
||
|
<< "score: " << faces.at<float>(i, 14) << "\n";
|
||
|
|
||
|
// Draw bounding box
|
||
|
rectangle(output, Rect2i(int(faces.at<float>(i, 0)), int(faces.at<float>(i, 1)), int(faces.at<float>(i, 2)), int(faces.at<float>(i, 3))), Scalar(0, 255, 0), thickness);
|
||
|
// Draw landmarks
|
||
|
circle(output, Point2i(int(faces.at<float>(i, 4)), int(faces.at<float>(i, 5))), 2, Scalar(255, 0, 0), thickness);
|
||
|
circle(output, Point2i(int(faces.at<float>(i, 6)), int(faces.at<float>(i, 7))), 2, Scalar( 0, 0, 255), thickness);
|
||
|
circle(output, Point2i(int(faces.at<float>(i, 8)), int(faces.at<float>(i, 9))), 2, Scalar( 0, 255, 0), thickness);
|
||
|
circle(output, Point2i(int(faces.at<float>(i, 10)), int(faces.at<float>(i, 11))), 2, Scalar(255, 0, 255), thickness);
|
||
|
circle(output, Point2i(int(faces.at<float>(i, 12)), int(faces.at<float>(i, 13))), 2, Scalar( 0, 255, 255), thickness);
|
||
|
}
|
||
|
return output;
|
||
|
}
|
||
|
|
||
|
int main(int argc, char ** argv)
|
||
|
{
|
||
|
CommandLineParser parser(argc, argv,
|
||
|
"{help h | | Print this message.}"
|
||
|
"{input i | | Path to the input image. Omit for detecting on default camera.}"
|
||
|
"{model m | yunet.onnx | Path to the model. Download yunet.onnx in https://github.com/ShiqiYu/libfacedetection.train/tree/master/tasks/task1/onnx.}"
|
||
|
"{score_threshold | 0.9 | Filter out faces of score < score_threshold.}"
|
||
|
"{nms_threshold | 0.3 | Suppress bounding boxes of iou >= nms_threshold.}"
|
||
|
"{top_k | 5000 | Keep top_k bounding boxes before NMS.}"
|
||
|
"{save s | false | Set true to save results. This flag is invalid when using camera.}"
|
||
|
"{vis v | true | Set true to open a window for result visualization. This flag is invalid when using camera.}"
|
||
|
);
|
||
|
if (argc == 1 || parser.has("help"))
|
||
|
{
|
||
|
parser.printMessage();
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
String modelPath = parser.get<String>("model");
|
||
|
|
||
|
float scoreThreshold = parser.get<float>("score_threshold");
|
||
|
float nmsThreshold = parser.get<float>("nms_threshold");
|
||
|
int topK = parser.get<int>("top_k");
|
||
|
|
||
|
bool save = parser.get<bool>("save");
|
||
|
bool vis = parser.get<bool>("vis");
|
||
|
|
||
|
// Initialize FaceDetectorYN
|
||
|
Ptr<FaceDetectorYN> detector = FaceDetectorYN::create(modelPath, "", Size(320, 320), scoreThreshold, nmsThreshold, topK);
|
||
|
|
||
|
// If input is an image
|
||
|
if (parser.has("input"))
|
||
|
{
|
||
|
String input = parser.get<String>("input");
|
||
|
Mat image = imread(input);
|
||
|
|
||
|
// Set input size before inference
|
||
|
detector->setInputSize(image.size());
|
||
|
|
||
|
// Inference
|
||
|
Mat faces;
|
||
|
detector->detect(image, faces);
|
||
|
|
||
|
// Draw results on the input image
|
||
|
Mat result = visualize(image, faces);
|
||
|
|
||
|
// Save results if save is true
|
||
|
if(save)
|
||
|
{
|
||
|
cout << "Results saved to result.jpg\n";
|
||
|
imwrite("result.jpg", result);
|
||
|
}
|
||
|
|
||
|
// Visualize results
|
||
|
if (vis)
|
||
|
{
|
||
|
namedWindow(input, WINDOW_AUTOSIZE);
|
||
|
imshow(input, result);
|
||
|
waitKey(0);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
int deviceId = 0;
|
||
|
VideoCapture cap;
|
||
|
cap.open(deviceId, CAP_ANY);
|
||
|
int frameWidth = int(cap.get(CAP_PROP_FRAME_WIDTH));
|
||
|
int frameHeight = int(cap.get(CAP_PROP_FRAME_HEIGHT));
|
||
|
detector->setInputSize(Size(frameWidth, frameHeight));
|
||
|
|
||
|
Mat frame;
|
||
|
TickMeter tm;
|
||
|
String msg = "FPS: ";
|
||
|
while(waitKey(1) < 0) // Press any key to exit
|
||
|
{
|
||
|
// Get frame
|
||
|
if (!cap.read(frame))
|
||
|
{
|
||
|
cerr << "No frames grabbed!\n";
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// Inference
|
||
|
Mat faces;
|
||
|
tm.start();
|
||
|
detector->detect(frame, faces);
|
||
|
tm.stop();
|
||
|
|
||
|
// Draw results on the input image
|
||
|
Mat result = visualize(frame, faces);
|
||
|
putText(result, msg + to_string(tm.getFPS()), Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
||
|
|
||
|
// Visualize results
|
||
|
imshow("Live", result);
|
||
|
|
||
|
tm.reset();
|
||
|
}
|
||
|
}
|
||
|
}
|