|
|
|
#include <opencv2/core/core.hpp>
|
|
|
|
#include <opencv2/objdetect/objdetect.hpp>
|
|
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
void help()
|
|
|
|
{
|
|
|
|
cout << "\nThis program demonstrates the cascade classifier. Now you can use Haar or LBP features.\n"
|
|
|
|
"This classifier can recognize many ~rigid objects, it's most known use is for faces.\n"
|
|
|
|
"Usage:\n"
|
|
|
|
"./facedetect [--cascade=<cascade_path> this is the primary trained classifier such as frontal face]\n"
|
|
|
|
" [--nested-cascade[=nested_cascade_path this an optional secondary classifier such as eyes]]\n"
|
|
|
|
" [--scale=<image scale greater or equal to 1, try 1.3 for example>\n"
|
|
|
|
" [--input=filename|camera_index]\n\n"
|
|
|
|
"see facedetect.cmd for one call:\n"
|
|
|
|
"./facedetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --nested-cascade=\"../../data/haarcascades/haarcascade_eye.xml\" --scale=1.3 \n"
|
|
|
|
"Hit any key to quit.\n"
|
|
|
|
"Using OpenCV version %s\n" << CV_VERSION << "\n" << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
void detectAndDraw( Mat& img,
|
|
|
|
CascadeClassifier& cascade, CascadeClassifier& nestedCascade,
|
|
|
|
double scale);
|
|
|
|
|
|
|
|
int main( int argc, const char** argv )
|
|
|
|
{
|
|
|
|
help();
|
|
|
|
|
|
|
|
CommandLineParser parser(argc, argv);
|
|
|
|
|
|
|
|
string cascadeName = parser.get<string>("cascade", "../../data/haarcascades/haarcascade_frontalface_alt.xml");
|
|
|
|
string nestedCascadeName = parser.get<string>("nested-cascade", "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml");
|
|
|
|
double scale = parser.get<double>("scale", 1.0);
|
|
|
|
string inputName = parser.get<string>("input", "0"); //read from camera by default
|
|
|
|
|
|
|
|
if (!cascadeName.empty())
|
|
|
|
cout << " from which we have cascadeName= " << cascadeName << endl;
|
|
|
|
|
|
|
|
if (!nestedCascadeName.empty())
|
|
|
|
cout << " from which we have nestedCascadeName= " << nestedCascadeName << endl;
|
|
|
|
|
|
|
|
CvCapture* capture = 0;
|
|
|
|
Mat frame, frameCopy, image;
|
|
|
|
CascadeClassifier cascade, nestedCascade;
|
|
|
|
|
|
|
|
if( !cascade.load( cascadeName ) )
|
|
|
|
{
|
|
|
|
cerr << "ERROR: Could not load classifier cascade" << endl;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !nestedCascade.load( nestedCascadeName ) )
|
|
|
|
cerr << "WARNING: Could not load classifier cascade for nested objects" << endl;
|
|
|
|
|
|
|
|
if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
|
|
|
|
{
|
|
|
|
capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
|
|
|
|
int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
|
|
|
|
if( !capture) cout << "Capture from CAM " << c << " didn't work" << endl;
|
|
|
|
}
|
|
|
|
else if( inputName.size() )
|
|
|
|
{
|
|
|
|
image = imread( inputName, 1 );
|
|
|
|
if( image.empty() )
|
|
|
|
{
|
|
|
|
capture = cvCaptureFromAVI( inputName.c_str() );
|
|
|
|
if( !capture ) cout << "Capture from AVI didn't work" << endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cvNamedWindow( "result", 1 );
|
|
|
|
|
|
|
|
if( capture )
|
|
|
|
{
|
|
|
|
cout << "In capture ..." << endl;
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
IplImage* iplImg = cvQueryFrame( capture );
|
|
|
|
frame = iplImg;
|
|
|
|
if( frame.empty() )
|
|
|
|
break;
|
|
|
|
if( iplImg->origin == IPL_ORIGIN_TL )
|
|
|
|
frame.copyTo( frameCopy );
|
|
|
|
else
|
|
|
|
flip( frame, frameCopy, 0 );
|
|
|
|
|
|
|
|
detectAndDraw( frameCopy, cascade, nestedCascade, scale );
|
|
|
|
|
|
|
|
if( waitKey( 10 ) >= 0 )
|
|
|
|
goto _cleanup_;
|
|
|
|
}
|
|
|
|
|
|
|
|
waitKey(0);
|
|
|
|
_cleanup_:
|
|
|
|
cvReleaseCapture( &capture );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cout << "In image read" << endl;
|
|
|
|
if( !image.empty() )
|
|
|
|
{
|
|
|
|
detectAndDraw( image, cascade, nestedCascade, scale );
|
|
|
|
waitKey(0);
|
|
|
|
}
|
|
|
|
else if( !inputName.empty() )
|
|
|
|
{
|
|
|
|
/* assume it is a text file containing the
|
|
|
|
list of the image filenames to be processed - one per line */
|
|
|
|
FILE* f = fopen( inputName.c_str(), "rt" );
|
|
|
|
if( f )
|
|
|
|
{
|
|
|
|
char buf[1000+1];
|
|
|
|
while( fgets( buf, 1000, f ) )
|
|
|
|
{
|
|
|
|
int len = (int)strlen(buf), c;
|
|
|
|
while( len > 0 && isspace(buf[len-1]) )
|
|
|
|
len--;
|
|
|
|
buf[len] = '\0';
|
|
|
|
cout << "file " << buf << endl;
|
|
|
|
image = imread( buf, 1 );
|
|
|
|
if( !image.empty() )
|
|
|
|
{
|
|
|
|
detectAndDraw( image, cascade, nestedCascade, scale );
|
|
|
|
c = waitKey(0);
|
|
|
|
if( c == 27 || c == 'q' || c == 'Q' )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cerr << "Aw snap, couldn't read image " << buf << endl;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
fclose(f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cvDestroyWindow("result");
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void detectAndDraw( Mat& img,
|
|
|
|
CascadeClassifier& cascade, CascadeClassifier& nestedCascade,
|
|
|
|
double scale)
|
|
|
|
{
|
|
|
|
int i = 0;
|
|
|
|
double t = 0;
|
|
|
|
vector<Rect> faces;
|
|
|
|
const static Scalar colors[] = { CV_RGB(0,0,255),
|
|
|
|
CV_RGB(0,128,255),
|
|
|
|
CV_RGB(0,255,255),
|
|
|
|
CV_RGB(0,255,0),
|
|
|
|
CV_RGB(255,128,0),
|
|
|
|
CV_RGB(255,255,0),
|
|
|
|
CV_RGB(255,0,0),
|
|
|
|
CV_RGB(255,0,255)} ;
|
|
|
|
Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
|
|
|
|
|
|
|
|
cvtColor( img, gray, CV_BGR2GRAY );
|
|
|
|
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
|
|
|
equalizeHist( smallImg, smallImg );
|
|
|
|
|
|
|
|
t = (double)cvGetTickCount();
|
|
|
|
cascade.detectMultiScale( smallImg, faces,
|
|
|
|
1.1, 2, 0
|
|
|
|
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
|
|
|
//|CV_HAAR_DO_ROUGH_SEARCH
|
|
|
|
|CV_HAAR_SCALE_IMAGE
|
|
|
|
,
|
|
|
|
Size(30, 30) );
|
|
|
|
t = (double)cvGetTickCount() - t;
|
|
|
|
printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
|
|
|
for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
|
|
|
|
{
|
|
|
|
Mat smallImgROI;
|
|
|
|
vector<Rect> nestedObjects;
|
|
|
|
Point center;
|
|
|
|
Scalar color = colors[i%8];
|
|
|
|
int radius;
|
|
|
|
center.x = cvRound((r->x + r->width*0.5)*scale);
|
|
|
|
center.y = cvRound((r->y + r->height*0.5)*scale);
|
|
|
|
radius = cvRound((r->width + r->height)*0.25*scale);
|
|
|
|
circle( img, center, radius, color, 3, 8, 0 );
|
|
|
|
if( nestedCascade.empty() )
|
|
|
|
continue;
|
|
|
|
smallImgROI = smallImg(*r);
|
|
|
|
nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
|
|
|
|
1.1, 2, 0
|
|
|
|
//|CV_HAAR_FIND_BIGGEST_OBJECT
|
|
|
|
//|CV_HAAR_DO_ROUGH_SEARCH
|
|
|
|
//|CV_HAAR_DO_CANNY_PRUNING
|
|
|
|
|CV_HAAR_SCALE_IMAGE
|
|
|
|
,
|
|
|
|
Size(30, 30) );
|
|
|
|
for( vector<Rect>::const_iterator nr = nestedObjects.begin(); nr != nestedObjects.end(); nr++ )
|
|
|
|
{
|
|
|
|
center.x = cvRound((r->x + nr->x + nr->width*0.5)*scale);
|
|
|
|
center.y = cvRound((r->y + nr->y + nr->height*0.5)*scale);
|
|
|
|
radius = cvRound((nr->width + nr->height)*0.25*scale);
|
|
|
|
circle( img, center, radius, color, 3, 8, 0 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cv::imshow( "result", img );
|
|
|
|
}
|