|
|
|
'''
|
|
|
|
Camshift tracker
|
|
|
|
================
|
|
|
|
|
|
|
|
This is a demo that shows mean-shift based tracking
|
|
|
|
You select a color objects such as your face and it tracks it.
|
|
|
|
This reads from video camera (0 by default, or the camera number the user enters)
|
|
|
|
|
|
|
|
http://www.robinhewitt.com/research/track/camshift.html
|
|
|
|
|
|
|
|
Usage:
|
|
|
|
------
|
|
|
|
camshift.py [<video source>]
|
|
|
|
|
|
|
|
To initialize tracking, select the object with mouse
|
|
|
|
|
|
|
|
Keys:
|
|
|
|
-----
|
|
|
|
ESC - exit
|
|
|
|
b - toggle back-projected probability visualization
|
|
|
|
'''
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
import video
|
|
|
|
|
|
|
|
|
|
|
|
class App(object):
|
|
|
|
def __init__(self, video_src):
|
|
|
|
self.cam = video.create_capture(video_src)
|
|
|
|
ret, self.frame = self.cam.read()
|
|
|
|
cv2.namedWindow('camshift')
|
|
|
|
cv2.setMouseCallback('camshift', self.onmouse)
|
|
|
|
|
|
|
|
self.selection = None
|
|
|
|
self.drag_start = None
|
|
|
|
self.tracking_state = 0
|
|
|
|
self.show_backproj = False
|
|
|
|
|
|
|
|
def onmouse(self, event, x, y, flags, param):
|
|
|
|
x, y = np.int16([x, y]) # BUG
|
|
|
|
if event == cv2.EVENT_LBUTTONDOWN:
|
|
|
|
self.drag_start = (x, y)
|
|
|
|
self.tracking_state = 0
|
|
|
|
if self.drag_start:
|
|
|
|
if flags & cv2.EVENT_FLAG_LBUTTON:
|
|
|
|
h, w = self.frame.shape[:2]
|
|
|
|
xo, yo = self.drag_start
|
|
|
|
x0, y0 = np.maximum(0, np.minimum([xo, yo], [x, y]))
|
|
|
|
x1, y1 = np.minimum([w, h], np.maximum([xo, yo], [x, y]))
|
|
|
|
self.selection = None
|
|
|
|
if x1-x0 > 0 and y1-y0 > 0:
|
|
|
|
self.selection = (x0, y0, x1, y1)
|
|
|
|
else:
|
|
|
|
self.drag_start = None
|
|
|
|
if self.selection is not None:
|
|
|
|
self.tracking_state = 1
|
|
|
|
|
|
|
|
def show_hist(self):
|
|
|
|
bin_count = self.hist.shape[0]
|
|
|
|
bin_w = 24
|
|
|
|
img = np.zeros((256, bin_count*bin_w, 3), np.uint8)
|
|
|
|
for i in xrange(bin_count):
|
|
|
|
h = int(self.hist[i])
|
|
|
|
cv2.rectangle(img, (i*bin_w+2, 255), ((i+1)*bin_w-2, 255-h), (int(180.0*i/bin_count), 255, 255), -1)
|
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_HSV2BGR)
|
|
|
|
cv2.imshow('hist', img)
|
|
|
|
|
|
|
|
def run(self):
|
|
|
|
while True:
|
|
|
|
ret, self.frame = self.cam.read()
|
|
|
|
vis = self.frame.copy()
|
|
|
|
hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)
|
|
|
|
mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
|
|
|
|
|
|
|
|
if self.selection:
|
|
|
|
x0, y0, x1, y1 = self.selection
|
|
|
|
self.track_window = (x0, y0, x1-x0, y1-y0)
|
|
|
|
hsv_roi = hsv[y0:y1, x0:x1]
|
|
|
|
mask_roi = mask[y0:y1, x0:x1]
|
|
|
|
hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
|
|
|
|
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX);
|
|
|
|
self.hist = hist.reshape(-1)
|
|
|
|
self.show_hist()
|
|
|
|
|
|
|
|
vis_roi = vis[y0:y1, x0:x1]
|
|
|
|
cv2.bitwise_not(vis_roi, vis_roi)
|
|
|
|
vis[mask == 0] = 0
|
|
|
|
|
|
|
|
if self.tracking_state == 1:
|
|
|
|
self.selection = None
|
|
|
|
prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
|
|
|
|
prob &= mask
|
|
|
|
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
|
|
|
|
track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)
|
|
|
|
|
|
|
|
if self.show_backproj:
|
|
|
|
vis[:] = prob[...,np.newaxis]
|
|
|
|
try: cv2.ellipse(vis, track_box, (0, 0, 255), 2)
|
|
|
|
except: print track_box
|
|
|
|
|
|
|
|
cv2.imshow('camshift', vis)
|
|
|
|
|
|
|
|
ch = cv2.waitKey(5)
|
|
|
|
if ch == 27:
|
|
|
|
break
|
|
|
|
if ch == ord('b'):
|
|
|
|
self.show_backproj = not self.show_backproj
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
import sys
|
|
|
|
try: video_src = sys.argv[1]
|
|
|
|
except: video_src = 0
|
|
|
|
print __doc__
|
|
|
|
App(video_src).run()
|
|
|
|
|