Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1001 lines
98 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "perf_precomp.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/core/utils/configuration.private.hpp>
namespace opencv_test {
// Flops_Kernel_Input_OutCN_Group_Stride_Pad_Dilation_PadAdjust_PadMode_Bias
struct TestSize_ {
int width, height;
operator Size() const { return Size(width, height); }
};
struct ConvParam_t {
struct TestSize_ kernel;
struct BlobShape { int dims[4]; } shapeIn;
int outCN;
int groups;
struct TestSize_ stride;
struct TestSize_ dilation;
struct TestSize_ pad;
struct TestSize_ padAdjust;
const char* padMode;
bool hasBias;
double declared_flops;
};
// Details: #12142
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
// Last update: 2023-11
// Extended and classified: #24547
static const ConvParam_t testConvolution_Configs[] = {
/* GFLOPS 3.398 x 20 = 67.956 */ {{7, 7}, {{1, 128, 46, 46}}, 128, 1, {1, 1}, {1, 1}, {3, 3}, {0, 0}, "", true, 3397788160.},
/* GFLOPS 16.987 x 3 = 50.962 */ {{5, 5}, {{1, 1152, 16, 16}}, 1152, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 16987226112.},
/* GFLOPS 23.122 x 2 = 46.244 */ {{5, 5}, {{1, 672, 32, 32}}, 672, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 23121788928.},
/* GFLOPS 4.566 x 5 = 22.828 */ {{7, 7}, {{1, 172, 46, 46}}, 128, 1, {1, 1}, {1, 1}, {3, 3}, {0, 0}, "", true, 4565684736.},
/* GFLOPS 11.797 x 1 = 11.797 */ {{5, 5}, {{1, 240, 64, 64}}, 240, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 11797463040.},
/* GFLOPS 11.797 x 1 = 11.797 */ {{5, 5}, {{1, 480, 32, 32}}, 480, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 11796971520.},
/* GFLOPS 5.780 x 1 = 5.780 */ {{5, 5}, {{1, 672, 32, 32}}, 672, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 5780447232.},
/* GFLOPS 4.247 x 1 = 4.247 */ {{5, 5}, {{1, 144, 128, 128}}, 144, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 4247322624.},
/* GFLOPS 3.407 x 1 = 3.407 */ {{3, 3}, {{1, 512, 19, 19}}, 1024, 1, {1, 1}, {6, 6}, {6, 6}, {0, 0}, "", true, 3407193088.},
/* GFLOPS 1.598 x 2 = 3.195 */ {{3, 3}, {{1, 32, 416, 416}}, 64, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 1597652992.},
/* GFLOPS 1.596 x 2 = 3.193 */ {{3, 3}, {{1, 64, 208, 208}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 1596268544.},
/* GFLOPS 1.596 x 2 = 3.191 */ {{3, 3}, {{1, 128, 104, 104}}, 256, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 1595576320.},
/* GFLOPS 1.595 x 2 = 3.190 */ {{3, 3}, {{1, 512, 26, 26}}, 1024, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 1595057152.},
/* GFLOPS 2.719 x 1 = 2.719 */ {{3, 3}, {{1, 96, 256, 256}}, 96, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 2719481856.},
/* GFLOPS 1.995 x 1 = 1.995 */ {{9, 9}, {{1, 3, 320, 400}}, 32, 1, {1, 1}, {1, 1}, {4, 4}, {0, 0}, "", true, 1994752000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.945 x 2 = 1.891 */ {{3, 3}, {{1, 32, 320, 320}}, 64, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 945356800.},
/* GFLOPS 0.945 x 2 = 1.889 */ {{3, 3}, {{1, 64, 160, 160}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 944537600.},
/* GFLOPS 0.944 x 2 = 1.888 */ {{3, 3}, {{1, 128, 80, 80}}, 256, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 944128000.},
/* GFLOPS 0.944 x 2 = 1.888 */ {{3, 3}, {{1, 256, 40, 40}}, 512, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 943923200.},
/* GFLOPS 1.195 x 1 = 1.195 */ {{9, 9}, {{1, 32, 240, 320}}, 3, 1, {1, 1}, {1, 1}, {4, 4}, {0, 0}, "", true, 1194624000.},
/* GFLOPS 1.182 x 1 = 1.182 */ {{3, 3}, {{1, 32, 320, 400}}, 64, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1181696000.},
/* GFLOPS 1.181 x 1 = 1.181 */ {{3, 3}, {{1, 64, 160, 200}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1180672000.},
/* GFLOPS 1.062 x 1 = 1.062 */ {{3, 3}, {{1, 240, 64, 64}}, 240, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1061928960.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.237 x 4 = 0.947 */ {{3, 3}, {{1, 16, 320, 320}}, 32, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 236748800.},
/* GFLOPS 0.236 x 4 = 0.945 */ {{3, 3}, {{1, 32, 160, 160}}, 64, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 236339200.},
/* GFLOPS 0.236 x 4 = 0.945 */ {{3, 3}, {{1, 64, 80, 80}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 236134400.},
/* GFLOPS 0.896 x 1 = 0.896 */ {{5, 5}, {{1, 96, 27, 27}}, 256, 2, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 895981824.},
/* GFLOPS 0.850 x 1 = 0.850 */ {{7, 7}, {{1, 3, 600, 800}}, 24, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 849600000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.356 x 2 = 0.711 */ {{6, 6}, {{1, 3, 640, 640}}, 16, 1, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 355532800.},
/* GFLOPS 0.701 x 1 = 0.701 */ {{3, 3}, {{1, 128, 75, 100}}, 160, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 700720000.},
/* GFLOPS 0.483 x 1 = 0.483 */ {{7, 7}, {{1, 3, 320, 320}}, 64, 1, {2, 2}, {1, 1}, {3, 3}, {0, 0}, "", false, 483328000.},
/* GFLOPS 0.472 x 1 = 0.472 */ {{3, 3}, {{1, 512, 19, 19}}, 512, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 471910400.},
/* GFLOPS 0.426 x 1 = 0.426 */ {{3, 3}, {{1, 128, 75, 75}}, 128, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 426037760.},
/* GFLOPS 0.426 x 1 = 0.426 */ {{3, 3}, {{1, 256, 38, 38}}, 256, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 425945344.},
/* GFLOPS 0.415 x 1 = 0.415 */ {{3, 3}, {{1, 64, 150, 150}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 415080000.},
/* GFLOPS 0.399 x 1 = 0.399 */ {{3, 3}, {{1, 32, 208, 208}}, 64, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 399413248.},
/* GFLOPS 0.090 x 4 = 0.360 */ {{3, 3}, {{1, 3, 640, 640}}, 16, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 90112000.},
/* GFLOPS 0.170 x 2 = 0.340 */ {{3, 3}, {{1, 64, 96, 96}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 170016768.},
/* GFLOPS 0.315 x 1 = 0.315 */ {{3, 3}, {{1, 96, 75, 100}}, 96, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 315369600.},
/* GFLOPS 0.240 x 1 = 0.240 */ {{3, 3}, {{1, 192, 38, 38}}, 192, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 239611584.},
/* GFLOPS 0.237 x 1 = 0.237 */ {{7, 7}, {{1, 3, 224, 224}}, 64, 1, {2, 2}, {1, 1}, {3, 3}, {0, 0}, "", false, 236830720.},
/* GFLOPS 0.213 x 1 = 0.213 */ {{3, 3}, {{1, 128, 38, 38}}, 256, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 213018880.},
/* GFLOPS 0.213 x 1 = 0.213 */ {{3, 3}, {{1, 128, 19, 19}}, 256, 1, {1, 1}, {2, 2}, {2, 2}, {0, 0}, "", false, 213018880.},
/* GFLOPS 0.212 x 1 = 0.212 */ {{7, 7}, {{1, 3, 300, 300}}, 32, 1, {2, 2}, {1, 1}, {3, 3}, {0, 0}, "", true, 212400000.},
/* GFLOPS 0.211 x 1 = 0.211 */ {{11, 11}, {{1, 3, 227, 227}}, 96, 1, {4, 4}, {1, 1}, {0, 0}, {0, 0}, "", true, 211120800.},
/* GFLOPS 0.159 x 1 = 0.159 */ {{7, 7}, {{1, 3, 300, 300}}, 24, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 159300000.},
/* GFLOPS 0.133 x 1 = 0.133 */ {{3, 3}, {{1, 128, 38, 38}}, 160, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 133136800.},
/* GFLOPS 0.120 x 1 = 0.120 */ {{5, 5}, {{1, 32, 28, 28}}, 96, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 120497664.},
/* GFLOPS 0.060 x 2 = 0.119 */ {{3, 3}, {{1, 3, 736, 736}}, 8, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 59586560.},
/* GFLOPS 0.118 x 1 = 0.118 */ {{3, 3}, {{1, 64, 80, 80}}, 64, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 118067200.},
/* GFLOPS 0.118 x 1 = 0.118 */ {{3, 3}, {{1, 128, 40, 40}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 118016000.},
/* GFLOPS 0.115 x 1 = 0.115 */ {{3, 3}, {{1, 3, 512, 512}}, 32, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 115343360.},
/* GFLOPS 0.107 x 1 = 0.107 */ {{3, 3}, {{1, 32, 75, 75}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 106648064.},
/* GFLOPS 0.050 x 2 = 0.101 */ {{2, 2}, {{1, 512, 2, 25}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 50343936.},
/* GFLOPS 0.044 x 2 = 0.087 */ {{5, 5}, {{1, 3, 192, 192}}, 32, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 43608800.},
/* GFLOPS 0.042 x 2 = 0.085 */ {{3, 3}, {{1, 128, 48, 48}}, 32, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 42485760.},
/* GFLOPS 0.021 x 4 = 0.084 */ {{5, 1}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {1, 1}, {2, 0}, {0, 0}, "", false, 21037056.},
/* GFLOPS 0.021 x 4 = 0.084 */ {{1, 5}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {1, 1}, {0, 2}, {0, 0}, "", true, 21037056.},
/* GFLOPS 0.076 x 1 = 0.076 */ {{3, 3}, {{1, 3, 416, 416}}, 32, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 76144640.},
/* GFLOPS 0.038 x 2 = 0.076 */ {{3, 3}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {8, 8}, {8, 8}, {0, 0}, "", true, 37814272.},
/* GFLOPS 0.038 x 2 = 0.076 */ {{3, 3}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {4, 4}, {4, 4}, {0, 0}, "", true, 37814272.},
/* GFLOPS 0.038 x 2 = 0.076 */ {{3, 3}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {2, 2}, {2, 2}, {0, 0}, "", true, 37814272.},
/* GFLOPS 0.038 x 2 = 0.076 */ {{3, 3}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {16, 16}, {16, 16}, {0, 0}, "", true, 37814272.},
/* GFLOPS 0.032 x 2 = 0.065 */ {{3, 3}, {{1, 3, 192, 192}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 32440320.},
/* GFLOPS 0.060 x 1 = 0.060 */ {{3, 3}, {{1, 96, 38, 38}}, 96, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 59920224.},
/* GFLOPS 0.059 x 1 = 0.059 */ {{3, 3}, {{1, 256, 10, 10}}, 512, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 58995200.},
/* GFLOPS 0.045 x 1 = 0.045 */ {{3, 3}, {{1, 3, 227, 227}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 44946880.},
/* GFLOPS 0.044 x 1 = 0.044 */ {{3, 3}, {{1, 128, 19, 19}}, 192, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 44256000.},
/* GFLOPS 0.043 x 1 = 0.043 */ {{7, 7}, {{1, 3, 96, 96}}, 64, 1, {2, 2}, {1, 1}, {3, 3}, {0, 0}, "", true, 43499520.},
/* GFLOPS 0.022 x 2 = 0.043 */ {{3, 3}, {{1, 3, 224, 224}}, 32, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 21684960.},
/* GFLOPS 0.022 x 2 = 0.043 */ {{3, 3}, {{1, 3, 258, 258}}, 24, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 21626880.},
/* GFLOPS 0.040 x 1 = 0.040 */ {{3, 3}, {{1, 3, 300, 300}}, 32, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 39600000.},
/* GFLOPS 0.034 x 1 = 0.034 */ {{2, 2}, {{1, 64, 64, 128}}, 32, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 33619968.},
/* GFLOPS 0.016 x 2 = 0.033 */ {{3, 3}, {{1, 3, 224, 224}}, 24, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 16263720.},
/* GFLOPS 0.005 x 6 = 0.032 */ {{3, 3}, {{1, 16, 48, 48}}, 32, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 5326848.},
/* GFLOPS 0.005 x 6 = 0.032 */ {{3, 3}, {{1, 32, 24, 24}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 5317632.},
/* GFLOPS 0.015 x 2 = 0.030 */ {{5, 5}, {{1, 24, 14, 14}}, 64, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 15065344.},
/* GFLOPS 0.029 x 1 = 0.029 */ {{3, 3}, {{1, 256, 10, 10}}, 256, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 29497600.},
/* GFLOPS 0.023 x 1 = 0.023 */ {{3, 3}, {{1, 3, 256, 512}}, 13, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 23429120.},
/* GFLOPS 0.017 x 1 = 0.017 */ {{2, 2}, {{1, 16, 128, 256}}, 16, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 16908288.},
/* GFLOPS 0.003 x 6 = 0.016 */ {{3, 3}, {{1, 16, 48, 48}}, 16, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 2663424.},
/* GFLOPS 0.015 x 1 = 0.015 */ {{5, 5}, {{1, 48, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 15059072.},
/* GFLOPS 0.005 x 2 = 0.011 */ {{3, 3}, {{1, 3, 256, 256}}, 6, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 5406720.},
/* GFLOPS 0.005 x 2 = 0.011 */ {{3, 3}, {{1, 6, 128, 128}}, 12, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 5357568.},
/* GFLOPS 0.005 x 2 = 0.011 */ {{3, 3}, {{1, 12, 64, 64}}, 24, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 5332992.},
/* GFLOPS 0.005 x 2 = 0.011 */ {{3, 3}, {{1, 24, 32, 32}}, 48, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 5320704.},
/* GFLOPS 0.003 x 4 = 0.011 */ {{3, 3}, {{1, 16, 24, 24}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 2663424.},
/* GFLOPS 0.010 x 1 = 0.010 */ {{5, 5}, {{1, 32, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 10041472.},
/* GFLOPS 0.008 x 1 = 0.008 */ {{5, 5}, {{1, 16, 14, 14}}, 48, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 7535808.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{3, 3}, {{1, 160, 6, 6}}, 256, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 6637824.},
/* GFLOPS 0.003 x 2 = 0.005 */ {{3, 3}, {{1, 32, 24, 24}}, 32, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 2658816.},
/* GFLOPS 0.003 x 2 = 0.005 */ {{3, 3}, {{1, 32, 12, 12}}, 128, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 2658816.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{5, 5}, {{1, 16, 12, 12}}, 32, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 3691008.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{5, 5}, {{1, 32, 6, 6}}, 64, 1, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 3688704.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{5, 5}, {{1, 32, 12, 12}}, 64, 1, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 3688704.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{5, 5}, {{1, 64, 6, 6}}, 128, 1, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 3687552.},
/* GFLOPS 0.001 x 2 = 0.003 */ {{3, 3}, {{1, 3, 128, 128}}, 6, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1351680.},
/* GFLOPS 0.001 x 2 = 0.003 */ {{3, 3}, {{1, 6, 64, 64}}, 12, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1339392.},
/* GFLOPS 0.001 x 2 = 0.003 */ {{3, 3}, {{1, 12, 32, 32}}, 24, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1333248.},
/* GFLOPS 0.001 x 2 = 0.003 */ {{3, 3}, {{1, 16, 12, 12}}, 128, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1331712.},
/* GFLOPS 0.001 x 2 = 0.003 */ {{3, 3}, {{1, 24, 16, 16}}, 48, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1330176.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{3, 3}, {{1, 128, 3, 3}}, 256, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 2360320.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{3, 3}, {{1, 128, 3, 3}}, 128, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1180160.},
/* GFLOPS 0.001 x 2 = 0.001 */ {{3, 3}, {{1, 16, 24, 24}}, 16, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 665856.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{2, 2}, {{1, 192, 2, 2}}, 195, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 299715.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{2, 2}, {{1, 192, 2, 2}}, 117, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 179829.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{3, 3}, {{1, 64, 2, 2}}, 128, 1, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 147584.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{3, 3}, {{1, 64, 2, 2}}, 64, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 73792.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{2, 2}, {{1, 192, 2, 2}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1537.},
};
static const ConvParam_t testConvolution_1x1_Configs[] = {
/* GFLOPS 0.280 x 5 = 1.402 */ {{1, 1}, {{1, 576, 38, 50}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 280409600.},
/* GFLOPS 0.210 x 6 = 1.262 */ {{1, 1}, {{1, 576, 38, 50}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 210307200.},
/* GFLOPS 0.357 x 3 = 1.072 */ {{1, 1}, {{1, 64, 208, 208}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 357187584.},
/* GFLOPS 0.246 x 4 = 0.985 */ {{1, 1}, {{1, 256, 75, 100}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 246240000.},
/* GFLOPS 0.053 x 18 = 0.947 */ {{1, 1}, {{1, 128, 40, 40}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 52633600.},
/* GFLOPS 0.712 x 1 = 0.712 */ {{1, 1}, {{1, 128, 208, 208}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 711606272.},
/* GFLOPS 0.178 x 4 = 0.712 */ {{1, 1}, {{1, 128, 104, 104}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 177901568.},
/* GFLOPS 0.354 x 2 = 0.707 */ {{1, 1}, {{1, 256, 52, 52}}, 255, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 353723760.},
/* GFLOPS 0.351 x 2 = 0.701 */ {{1, 1}, {{1, 576, 38, 50}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 350512000.},
/* GFLOPS 0.211 x 3 = 0.634 */ {{1, 1}, {{1, 64, 80, 80}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 211353600.},
/* GFLOPS 0.211 x 3 = 0.632 */ {{1, 1}, {{1, 128, 40, 40}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 210534400.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.105 x 6 = 0.632 */ {{1, 1}, {{1, 128, 80, 80}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 105267200.},
/* GFLOPS 0.210 x 3 = 0.630 */ {{1, 1}, {{1, 512, 40, 40}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 209920000.},
/* GFLOPS 0.615 x 1 = 0.615 */ {{1, 1}, {{1, 320, 75, 100}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 615360000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.044 x 14 = 0.609 */ {{1, 1}, {{1, 1632, 7, 7}}, 272, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 43515920.},
/* GFLOPS 0.185 x 3 = 0.554 */ {{1, 1}, {{1, 192, 75, 100}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 184800000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.266 x 2 = 0.532 */ {{1, 1}, {{1, 240, 48, 48}}, 240, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 265973760.},
/* GFLOPS 0.491 x 1 = 0.491 */ {{1, 1}, {{1, 576, 38, 50}}, 224, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 490716800.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.079 x 6 = 0.473 */ {{1, 1}, {{1, 192, 40, 40}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 78848000.},
/* GFLOPS 0.079 x 6 = 0.472 */ {{1, 1}, {{1, 384, 20, 20}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 78745600.},
/* GFLOPS 0.155 x 3 = 0.464 */ {{1, 1}, {{1, 112, 32, 32}}, 672, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 154828800.},
/* GFLOPS 0.114 x 4 = 0.454 */ {{1, 1}, {{1, 192, 16, 16}}, 1152, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 113541120.},
/* GFLOPS 0.089 x 5 = 0.443 */ {{1, 1}, {{1, 512, 13, 13}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 88691200.},
/* GFLOPS 0.428 x 1 = 0.428 */ {{1, 1}, {{1, 64, 64, 64}}, 810, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 427991040.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.053 x 8 = 0.426 */ {{1, 1}, {{1, 32, 160, 160}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 53248000.},
/* GFLOPS 0.211 x 2 = 0.423 */ {{1, 1}, {{1, 64, 160, 160}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 211353600.},
/* GFLOPS 0.106 x 4 = 0.423 */ {{1, 1}, {{1, 64, 160, 160}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 105676800.},
/* GFLOPS 0.421 x 1 = 0.421 */ {{1, 1}, {{1, 576, 38, 50}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 420614400.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.211 x 2 = 0.421 */ {{1, 1}, {{1, 64, 80, 80}}, 255, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 210528000.},
/* GFLOPS 0.420 x 1 = 0.420 */ {{1, 1}, {{1, 256, 40, 40}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 420249600.},
/* GFLOPS 0.420 x 1 = 0.420 */ {{1, 1}, {{1, 1024, 10, 10}}, 2048, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 419635200.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.210 x 2 = 0.420 */ {{1, 1}, {{1, 256, 80, 80}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 210124800.},
/* GFLOPS 0.376 x 1 = 0.376 */ {{1, 1}, {{1, 24, 300, 400}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 376320000.},
/* GFLOPS 0.179 x 2 = 0.357 */ {{1, 1}, {{1, 64, 208, 208}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 178593792.},
/* GFLOPS 0.089 x 4 = 0.357 */ {{1, 1}, {{1, 64, 104, 104}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 89296896.},
/* GFLOPS 0.356 x 1 = 0.356 */ {{1, 1}, {{1, 128, 104, 104}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 355803136.},
/* GFLOPS 0.113 x 3 = 0.340 */ {{1, 1}, {{1, 1152, 16, 16}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 113295360.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.080 x 4 = 0.321 */ {{1, 1}, {{1, 56, 46, 46}}, 336, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 80340288.},
/* GFLOPS 0.158 x 2 = 0.315 */ {{1, 1}, {{1, 192, 80, 80}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 157696000.},
/* GFLOPS 0.157 x 2 = 0.315 */ {{1, 1}, {{1, 384, 40, 40}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 157491200.},
/* GFLOPS 0.154 x 2 = 0.309 */ {{1, 1}, {{1, 672, 32, 32}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 154255360.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.103 x 3 = 0.309 */ {{1, 1}, {{1, 512, 7, 7}}, 2048, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 102860800.},
/* GFLOPS 0.308 x 1 = 0.308 */ {{1, 1}, {{1, 320, 75, 100}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 307680000.},
/* GFLOPS 0.034 x 9 = 0.304 */ {{1, 1}, {{1, 64, 64, 64}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 33816576.},
/* GFLOPS 0.017 x 17 = 0.290 */ {{1, 1}, {{1, 32, 32, 64}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 17039360.},
/* GFLOPS 0.017 x 16 = 0.269 */ {{1, 1}, {{1, 128, 32, 64}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 16842752.},
/* GFLOPS 0.266 x 1 = 0.266 */ {{1, 1}, {{1, 768, 26, 26}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 265987072.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.132 x 2 = 0.263 */ {{1, 1}, {{1, 128, 80, 80}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 131584000.},
/* GFLOPS 0.026 x 10 = 0.263 */ {{1, 1}, {{1, 128, 40, 40}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 26316800.},
/* GFLOPS 0.262 x 1 = 0.262 */ {{1, 1}, {{1, 2560, 20, 20}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 262195200.},
/* GFLOPS 0.248 x 1 = 0.248 */ {{1, 1}, {{1, 64, 150, 200}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 247680000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.041 x 6 = 0.245 */ {{1, 1}, {{1, 80, 23, 23}}, 480, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 40881120.},
/* GFLOPS 0.079 x 3 = 0.237 */ {{1, 1}, {{1, 80, 32, 32}}, 480, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 79134720.},
/* GFLOPS 0.116 x 2 = 0.231 */ {{1, 1}, {{1, 24, 128, 128}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 115605504.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.107 x 2 = 0.215 */ {{1, 1}, {{1, 16, 184, 184}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 107255808.},
/* GFLOPS 0.106 x 2 = 0.213 */ {{1, 1}, {{1, 32, 160, 160}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 106496000.},
/* GFLOPS 0.105 x 2 = 0.210 */ {{1, 1}, {{1, 128, 40, 40}}, 255, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 104856000.},
/* GFLOPS 0.208 x 1 = 0.208 */ {{1, 1}, {{1, 16, 256, 256}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 207618048.},
/* GFLOPS 0.206 x 1 = 0.206 */ {{1, 1}, {{1, 256, 56, 56}}, 512, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 205922304.},
/* GFLOPS 0.206 x 1 = 0.206 */ {{1, 1}, {{1, 512, 28, 28}}, 1024, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 205721600.},
/* GFLOPS 0.206 x 1 = 0.206 */ {{1, 1}, {{1, 1024, 14, 14}}, 2048, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 205621248.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.103 x 2 = 0.206 */ {{1, 1}, {{1, 1024, 7, 7}}, 1024, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 102810624.},
/* GFLOPS 0.103 x 2 = 0.206 */ {{1, 1}, {{1, 2048, 7, 7}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 102785536.},
/* GFLOPS 0.201 x 1 = 0.201 */ {{1, 1}, {{1, 512, 14, 14}}, 1000, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 200900000.},
/* GFLOPS 0.190 x 1 = 0.190 */ {{1, 1}, {{1, 256, 38, 38}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 189637632.},
/* GFLOPS 0.047 x 4 = 0.190 */ {{1, 1}, {{1, 256, 38, 38}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 47409408.},
/* GFLOPS 0.189 x 1 = 0.189 */ {{1, 1}, {{1, 1152, 16, 16}}, 320, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 188825600.},
/* GFLOPS 0.185 x 1 = 0.185 */ {{1, 1}, {{1, 128, 75, 75}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 185040000.},
/* GFLOPS 0.180 x 1 = 0.180 */ {{1, 1}, {{1, 224, 56, 56}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 180232192.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.045 x 4 = 0.179 */ {{1, 1}, {{1, 16, 184, 184}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 44689920.},
/* GFLOPS 0.089 x 2 = 0.177 */ {{1, 1}, {{1, 24, 112, 112}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 88510464.},
/* GFLOPS 0.088 x 2 = 0.177 */ {{1, 1}, {{1, 1024, 13, 13}}, 255, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 88301655.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.041 x 4 = 0.163 */ {{1, 1}, {{1, 480, 23, 23}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 40669520.},
/* GFLOPS 0.080 x 2 = 0.159 */ {{1, 1}, {{1, 336, 46, 46}}, 56, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 79747808.},
/* GFLOPS 0.080 x 2 = 0.159 */ {{1, 1}, {{1, 40, 64, 64}}, 240, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 79626240.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.079 x 2 = 0.159 */ {{1, 1}, {{1, 48, 160, 160}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 79462400.},
/* GFLOPS 0.079 x 2 = 0.158 */ {{1, 1}, {{1, 96, 80, 80}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 79052800.},
/* GFLOPS 0.079 x 2 = 0.157 */ {{1, 1}, {{1, 480, 32, 32}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 78725120.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.074 x 2 = 0.147 */ {{1, 1}, {{1, 8, 368, 368}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 73670656.},
/* GFLOPS 0.072 x 2 = 0.144 */ {{1, 1}, {{1, 1024, 10, 10}}, 352, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 72124800.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.072 x 2 = 0.143 */ {{1, 1}, {{1, 1632, 7, 7}}, 448, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 71673280.},
/* GFLOPS 0.140 x 1 = 0.140 */ {{1, 1}, {{1, 576, 38, 50}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 140204800.},
/* GFLOPS 0.017 x 8 = 0.138 */ {{1, 1}, {{1, 16, 64, 128}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 17301504.},
/* GFLOPS 0.044 x 3 = 0.133 */ {{1, 1}, {{1, 512, 13, 13}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 44345600.},
/* GFLOPS 0.129 x 1 = 0.129 */ {{1, 1}, {{1, 160, 56, 56}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 128851968.},
/* GFLOPS 0.118 x 1 = 0.118 */ {{1, 1}, {{1, 320, 38, 38}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 118477312.},
/* GFLOPS 0.039 x 3 = 0.118 */ {{1, 1}, {{1, 1024, 10, 10}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 39340800.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.017 x 7 = 0.118 */ {{1, 1}, {{1, 64, 64, 128}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 16908288.},
/* GFLOPS 0.019 x 6 = 0.115 */ {{1, 1}, {{1, 32, 96, 96}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 19169280.},
/* GFLOPS 0.114 x 1 = 0.114 */ {{1, 1}, {{1, 144, 128, 128}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 113639424.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.057 x 2 = 0.114 */ {{1, 1}, {{1, 240, 46, 46}}, 56, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 56996576.},
/* GFLOPS 0.056 x 2 = 0.113 */ {{1, 1}, {{1, 448, 7, 7}}, 1280, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 56259840.},
/* GFLOPS 0.112 x 1 = 0.112 */ {{1, 1}, {{1, 1024, 10, 10}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 111875400.},
/* GFLOPS 0.110 x 1 = 0.110 */ {{1, 1}, {{1, 480, 32, 32}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 110215168.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.054 x 2 = 0.108 */ {{1, 1}, {{1, 16, 320, 320}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 54067200.},
/* GFLOPS 0.107 x 1 = 0.107 */ {{1, 1}, {{1, 64, 32, 32}}, 810, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 106997760.},
/* GFLOPS 0.036 x 3 = 0.107 */ {{1, 1}, {{1, 192, 38, 38}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 35580160.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.027 x 4 = 0.106 */ {{1, 1}, {{1, 32, 160, 160}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 26624000.},
/* GFLOPS 0.027 x 4 = 0.106 */ {{1, 1}, {{1, 24, 92, 92}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 26543104.},
/* GFLOPS 0.026 x 4 = 0.106 */ {{1, 1}, {{1, 64, 80, 80}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 26419200.},
/* GFLOPS 0.105 x 1 = 0.105 */ {{1, 1}, {{1, 256, 40, 40}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 105062400.},
/* GFLOPS 0.105 x 1 = 0.105 */ {{1, 1}, {{1, 1024, 10, 10}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 104908800.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.052 x 2 = 0.105 */ {{1, 1}, {{1, 256, 20, 20}}, 255, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 52326000.},
/* GFLOPS 0.026 x 4 = 0.105 */ {{1, 1}, {{1, 64, 92, 92}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 26204544.},
/* GFLOPS 0.052 x 2 = 0.104 */ {{1, 1}, {{1, 32, 112, 112}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 52183040.},
/* GFLOPS 0.051 x 2 = 0.103 */ {{1, 1}, {{1, 512, 7, 7}}, 1024, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 51430400.},
/* GFLOPS 0.101 x 1 = 0.101 */ {{1, 1}, {{1, 512, 19, 19}}, 273, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 101016825.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.008 x 12 = 0.101 */ {{1, 1}, {{1, 64, 32, 32}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 8454144.},
/* GFLOPS 0.050 x 2 = 0.100 */ {{1, 1}, {{1, 24, 92, 92}}, 120, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 49768320.},
/* GFLOPS 0.095 x 1 = 0.095 */ {{1, 1}, {{1, 128, 38, 38}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 95003648.},
/* GFLOPS 0.094 x 1 = 0.094 */ {{1, 1}, {{1, 32, 150, 150}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 93600000.},
/* GFLOPS 0.093 x 1 = 0.093 */ {{1, 1}, {{1, 512, 38, 50}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 93480000.},
/* GFLOPS 0.093 x 1 = 0.093 */ {{1, 1}, {{1, 576, 19, 19}}, 224, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 93236192.},
/* GFLOPS 0.093 x 1 = 0.093 */ {{1, 1}, {{1, 64, 75, 75}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 92880000.},
/* GFLOPS 0.092 x 1 = 0.092 */ {{1, 1}, {{1, 192, 75, 100}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 92400000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.031 x 3 = 0.092 */ {{1, 1}, {{1, 160, 10, 10}}, 960, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 30816000.},
/* GFLOPS 0.044 x 2 = 0.088 */ {{1, 1}, {{1, 40, 184, 184}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 43877376.},
/* GFLOPS 0.044 x 2 = 0.087 */ {{1, 1}, {{1, 272, 7, 7}}, 1632, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 43582560.},
/* GFLOPS 0.042 x 2 = 0.084 */ {{1, 1}, {{1, 672, 14, 14}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 42179200.},
/* GFLOPS 0.082 x 1 = 0.082 */ {{1, 1}, {{1, 320, 10, 10}}, 1280, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 82048000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.041 x 2 = 0.082 */ {{1, 1}, {{1, 40, 46, 46}}, 240, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 41135040.},
/* GFLOPS 0.040 x 2 = 0.080 */ {{1, 1}, {{1, 24, 92, 92}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 39814656.},
/* GFLOPS 0.013 x 6 = 0.080 */ {{1, 1}, {{1, 32, 80, 80}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 13312000.},
/* GFLOPS 0.079 x 1 = 0.079 */ {{1, 1}, {{1, 240, 64, 64}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 78807040.},
/* GFLOPS 0.079 x 1 = 0.079 */ {{1, 1}, {{1, 384, 40, 40}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 78745600.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.040 x 2 = 0.079 */ {{1, 1}, {{1, 24, 75, 75}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 39690000.},
/* GFLOPS 0.077 x 1 = 0.077 */ {{1, 1}, {{1, 96, 56, 56}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 77471744.},
/* GFLOPS 0.076 x 1 = 0.076 */ {{1, 1}, {{1, 96, 128, 128}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 75890688.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.038 x 2 = 0.076 */ {{1, 1}, {{1, 64, 48, 48}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 38043648.},
/* GFLOPS 0.018 x 4 = 0.074 */ {{1, 1}, {{1, 8, 368, 368}}, 8, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 18417664.},
/* GFLOPS 0.071 x 1 = 0.071 */ {{1, 1}, {{1, 16, 150, 150}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 71280000.},
/* GFLOPS 0.071 x 1 = 0.071 */ {{1, 1}, {{1, 24, 150, 150}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 70560000.},
/* GFLOPS 0.068 x 1 = 0.068 */ {{1, 1}, {{1, 32, 256, 256}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 68157440.},
/* GFLOPS 0.066 x 1 = 0.066 */ {{1, 1}, {{1, 672, 16, 16}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 66109440.},
/* GFLOPS 0.066 x 1 = 0.066 */ {{1, 1}, {{1, 1280, 10, 10}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 65561600.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.033 x 2 = 0.066 */ {{1, 1}, {{1, 128, 40, 40}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 32896000.},
/* GFLOPS 0.016 x 4 = 0.066 */ {{1, 1}, {{1, 40, 46, 46}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 16454016.},
/* GFLOPS 0.016 x 4 = 0.065 */ {{1, 1}, {{1, 96, 46, 46}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 16335520.},
/* GFLOPS 0.061 x 1 = 0.061 */ {{1, 1}, {{1, 960, 10, 10}}, 320, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 61472000.},
/* GFLOPS 0.061 x 1 = 0.061 */ {{1, 1}, {{1, 512, 46, 46}}, 28, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 60729200.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.031 x 2 = 0.061 */ {{1, 1}, {{1, 960, 10, 10}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 30736000.},
/* GFLOPS 0.059 x 1 = 0.059 */ {{1, 1}, {{1, 320, 38, 38}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 59238656.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.007 x 8 = 0.059 */ {{1, 1}, {{1, 112, 7, 7}}, 672, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7408800.},
/* GFLOPS 0.010 x 6 = 0.058 */ {{1, 1}, {{1, 56, 16, 16}}, 336, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9719808.},
/* GFLOPS 0.010 x 6 = 0.058 */ {{1, 1}, {{1, 64, 14, 14}}, 384, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9709056.},
/* GFLOPS 0.028 x 2 = 0.057 */ {{1, 1}, {{1, 336, 23, 23}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 28481360.},
/* GFLOPS 0.007 x 8 = 0.057 */ {{1, 1}, {{1, 96, 8, 8}}, 576, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7114752.},
/* GFLOPS 0.027 x 2 = 0.054 */ {{1, 1}, {{1, 16, 160, 160}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 27033600.},
/* GFLOPS 0.018 x 3 = 0.054 */ {{1, 1}, {{1, 32, 38, 38}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 18021120.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.014 x 4 = 0.054 */ {{1, 1}, {{1, 16, 160, 160}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 13516800.},
/* GFLOPS 0.053 x 1 = 0.053 */ {{1, 1}, {{1, 528, 14, 14}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 53036032.},
/* GFLOPS 0.053 x 1 = 0.053 */ {{1, 1}, {{1, 64, 40, 40}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 52838400.},
/* GFLOPS 0.053 x 1 = 0.053 */ {{1, 1}, {{1, 128, 80, 80}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 52633600.},
/* GFLOPS 0.053 x 1 = 0.053 */ {{1, 1}, {{1, 128, 20, 20}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 52633600.},
/* GFLOPS 0.053 x 1 = 0.053 */ {{1, 1}, {{1, 256, 10, 10}}, 1024, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 52531200.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.026 x 2 = 0.053 */ {{1, 1}, {{1, 16, 112, 112}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 26492928.},
/* GFLOPS 0.013 x 4 = 0.053 */ {{1, 1}, {{1, 128, 20, 20}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 13158400.},
/* GFLOPS 0.026 x 2 = 0.052 */ {{1, 1}, {{1, 1024, 10, 10}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 26227200.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.013 x 4 = 0.052 */ {{1, 1}, {{1, 16, 64, 64}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 12976128.},
/* GFLOPS 0.051 x 1 = 0.051 */ {{1, 1}, {{1, 256, 56, 56}}, 128, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 51480576.},
/* GFLOPS 0.051 x 1 = 0.051 */ {{1, 1}, {{1, 512, 28, 28}}, 256, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 51430400.},
/* GFLOPS 0.051 x 1 = 0.051 */ {{1, 1}, {{1, 1024, 14, 14}}, 512, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 51405312.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.026 x 2 = 0.051 */ {{1, 1}, {{1, 960, 7, 7}}, 272, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 25603088.},
/* GFLOPS 0.047 x 1 = 0.047 */ {{1, 1}, {{1, 144, 64, 64}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 47349760.},
/* GFLOPS 0.047 x 1 = 0.047 */ {{1, 1}, {{1, 512, 38, 50}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 46740000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.023 x 2 = 0.046 */ {{1, 1}, {{1, 56, 46, 46}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 22954368.},
/* GFLOPS 0.045 x 1 = 0.045 */ {{1, 1}, {{1, 224, 28, 28}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 45058048.},
/* GFLOPS 0.044 x 1 = 0.044 */ {{1, 1}, {{1, 512, 13, 13}}, 255, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 44172375.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.007 x 6 = 0.044 */ {{1, 1}, {{1, 672, 7, 7}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7381360.},
/* GFLOPS 0.007 x 6 = 0.043 */ {{1, 1}, {{1, 576, 8, 8}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7084032.},
/* GFLOPS 0.020 x 2 = 0.041 */ {{1, 1}, {{1, 120, 46, 46}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 20398240.},
/* GFLOPS 0.010 x 4 = 0.040 */ {{1, 1}, {{1, 16, 56, 56}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9934848.},
/* GFLOPS 0.039 x 1 = 0.039 */ {{1, 1}, {{1, 240, 32, 32}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 39403520.},
/* GFLOPS 0.039 x 1 = 0.039 */ {{1, 1}, {{1, 144, 75, 75}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 39015000.},
/* GFLOPS 0.039 x 1 = 0.039 */ {{1, 1}, {{1, 192, 28, 28}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 38635520.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.020 x 2 = 0.039 */ {{1, 1}, {{1, 32, 112, 112}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 19568640.},
/* GFLOPS 0.010 x 4 = 0.039 */ {{1, 1}, {{1, 336, 16, 16}}, 56, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9648128.},
/* GFLOPS 0.019 x 2 = 0.038 */ {{1, 1}, {{1, 32, 48, 48}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 19169280.},
/* GFLOPS 0.005 x 8 = 0.038 */ {{1, 1}, {{1, 256, 6, 6}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4727808.},
/* GFLOPS 0.036 x 1 = 0.036 */ {{1, 1}, {{1, 480, 14, 14}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 36164352.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.018 x 2 = 0.036 */ {{1, 1}, {{1, 40, 46, 46}}, 104, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 17825184.},
/* GFLOPS 0.009 x 4 = 0.036 */ {{1, 1}, {{1, 8, 256, 256}}, 8, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 8912896.},
/* GFLOPS 0.035 x 1 = 0.035 */ {{1, 1}, {{1, 512, 46, 46}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 34702400.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.018 x 2 = 0.035 */ {{1, 1}, {{1, 104, 46, 46}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 17689760.},
/* GFLOPS 0.034 x 1 = 0.034 */ {{1, 1}, {{1, 128, 32, 64}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 33685504.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.017 x 2 = 0.034 */ {{1, 1}, {{1, 192, 28, 28}}, 56, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 16903040.},
/* GFLOPS 0.033 x 1 = 0.033 */ {{1, 1}, {{1, 528, 14, 14}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 33147520.},
/* GFLOPS 0.033 x 1 = 0.033 */ {{1, 1}, {{1, 1024, 10, 10}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 32784000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.016 x 2 = 0.033 */ {{1, 1}, {{1, 40, 92, 92}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 16454016.},
/* GFLOPS 0.005 x 6 = 0.033 */ {{1, 1}, {{1, 48, 14, 14}}, 288, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 5475456.},
/* GFLOPS 0.032 x 1 = 0.032 */ {{1, 1}, {{1, 160, 28, 28}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 32212992.},
/* GFLOPS 0.032 x 1 = 0.032 */ {{1, 1}, {{1, 512, 14, 14}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 32144000.},
/* GFLOPS 0.032 x 1 = 0.032 */ {{1, 1}, {{1, 508, 14, 14}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 31893120.},
/* GFLOPS 0.011 x 3 = 0.032 */ {{1, 1}, {{1, 320, 16, 16}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 10502144.},
/* GFLOPS 0.031 x 1 = 0.031 */ {{1, 1}, {{1, 832, 7, 7}}, 384, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 31328640.},
/* GFLOPS 0.015 x 2 = 0.030 */ {{1, 1}, {{1, 128, 46, 46}}, 28, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 15226736.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.015 x 2 = 0.030 */ {{1, 1}, {{1, 336, 14, 14}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 14773696.},
/* GFLOPS 0.005 x 6 = 0.030 */ {{1, 1}, {{1, 40, 16, 16}}, 240, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4976640.},
/* GFLOPS 0.029 x 1 = 0.029 */ {{1, 1}, {{1, 512, 14, 14}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 28929600.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.015 x 2 = 0.029 */ {{1, 1}, {{1, 112, 32, 32}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 14745600.},
/* GFLOPS 0.007 x 4 = 0.029 */ {{1, 1}, {{1, 24, 32, 32}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7225344.},
/* GFLOPS 0.014 x 2 = 0.028 */ {{1, 1}, {{1, 576, 8, 8}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 14168064.},
/* GFLOPS 0.027 x 1 = 0.027 */ {{1, 1}, {{1, 384, 19, 19}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 26650464.},
/* GFLOPS 0.027 x 1 = 0.027 */ {{1, 1}, {{1, 576, 19, 19}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 26638912.},
/* GFLOPS 0.026 x 1 = 0.026 */ {{1, 1}, {{1, 96, 75, 75}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 26055000.},
/* GFLOPS 0.026 x 1 = 0.026 */ {{1, 1}, {{1, 1024, 10, 10}}, 126, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 25817400.},
/* GFLOPS 0.013 x 2 = 0.026 */ {{1, 1}, {{1, 512, 14, 14}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 12857600.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.009 x 3 = 0.026 */ {{1, 1}, {{1, 128, 46, 46}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 8700992.},
/* GFLOPS 0.013 x 2 = 0.025 */ {{1, 1}, {{1, 96, 64, 64}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 12648448.},
/* GFLOPS 0.024 x 1 = 0.024 */ {{1, 1}, {{1, 480, 14, 14}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 24109568.},
/* GFLOPS 0.024 x 1 = 0.024 */ {{1, 1}, {{1, 128, 38, 38}}, 256, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 23750912.},
/* GFLOPS 0.023 x 1 = 0.023 */ {{1, 1}, {{1, 32, 150, 150}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 23400000.},
/* GFLOPS 0.023 x 1 = 0.023 */ {{1, 1}, {{1, 512, 19, 19}}, 63, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 23311575.},
/* GFLOPS 0.023 x 1 = 0.023 */ {{1, 1}, {{1, 448, 14, 14}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 22503936.},
/* GFLOPS 0.023 x 1 = 0.023 */ {{1, 1}, {{1, 512, 14, 14}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 22500800.},
/* GFLOPS 0.022 x 1 = 0.022 */ {{1, 1}, {{1, 508, 14, 14}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 22325184.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.006 x 4 = 0.022 */ {{1, 1}, {{1, 24, 28, 28}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 5531904.},
/* GFLOPS 0.005 x 4 = 0.022 */ {{1, 1}, {{1, 288, 14, 14}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 5428416.},
/* GFLOPS 0.021 x 1 = 0.021 */ {{1, 1}, {{1, 40, 64, 64}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 21233664.},
/* GFLOPS 0.021 x 1 = 0.021 */ {{1, 1}, {{1, 416, 14, 14}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 20898304.},
/* GFLOPS 0.021 x 1 = 0.021 */ {{1, 1}, {{1, 832, 7, 7}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 20885760.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.010 x 2 = 0.021 */ {{1, 1}, {{1, 32, 64, 64}}, 39, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 10383360.},
/* GFLOPS 0.010 x 2 = 0.020 */ {{1, 1}, {{1, 24, 112, 112}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9834496.},
/* GFLOPS 0.005 x 4 = 0.020 */ {{1, 1}, {{1, 240, 16, 16}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4925440.},
/* GFLOPS 0.019 x 1 = 0.019 */ {{1, 1}, {{1, 384, 14, 14}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 19292672.},
/* GFLOPS 0.019 x 1 = 0.019 */ {{1, 1}, {{1, 64, 64, 64}}, 36, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 19021824.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.010 x 2 = 0.019 */ {{1, 1}, {{1, 96, 56, 56}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9683968.},
/* GFLOPS 0.010 x 2 = 0.019 */ {{1, 1}, {{1, 32, 48, 48}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9584640.},
/* GFLOPS 0.010 x 2 = 0.019 */ {{1, 1}, {{1, 64, 48, 48}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 9510912.},
/* GFLOPS 0.018 x 1 = 0.018 */ {{1, 1}, {{1, 576, 10, 10}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 18448000.},
/* GFLOPS 0.018 x 1 = 0.018 */ {{1, 1}, {{1, 480, 14, 14}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 18082176.},
/* GFLOPS 0.018 x 1 = 0.018 */ {{1, 1}, {{1, 192, 38, 38}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 17790080.},
/* GFLOPS 0.018 x 1 = 0.018 */ {{1, 1}, {{1, 352, 14, 14}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 17687040.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.009 x 2 = 0.018 */ {{1, 1}, {{1, 8, 128, 128}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 8912896.},
/* GFLOPS 0.008 x 2 = 0.017 */ {{1, 1}, {{1, 64, 80, 80}}, 10, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 8256000.},
/* GFLOPS 0.016 x 1 = 0.016 */ {{1, 1}, {{1, 832, 7, 7}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 15664320.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.008 x 2 = 0.016 */ {{1, 1}, {{1, 128, 20, 20}}, 80, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 8224000.},
/* GFLOPS 0.008 x 2 = 0.016 */ {{1, 1}, {{1, 256, 12, 12}}, 108, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7978176.},
/* GFLOPS 0.014 x 1 = 0.014 */ {{1, 1}, {{1, 288, 14, 14}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 14475776.},
/* GFLOPS 0.014 x 1 = 0.014 */ {{1, 1}, {{1, 512, 5, 5}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 13991250.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.007 x 2 = 0.014 */ {{1, 1}, {{1, 288, 14, 14}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7237888.},
/* GFLOPS 0.007 x 2 = 0.014 */ {{1, 1}, {{1, 144, 32, 32}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7102464.},
/* GFLOPS 0.007 x 2 = 0.014 */ {{1, 1}, {{1, 240, 16, 16}}, 56, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6895616.},
/* GFLOPS 0.013 x 1 = 0.013 */ {{1, 1}, {{1, 144, 38, 38}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 13354112.},
/* GFLOPS 0.013 x 1 = 0.013 */ {{1, 1}, {{1, 832, 7, 7}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 13053600.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.013 x 1 = 0.013 */ {{1, 1}, {{1, 508, 14, 14}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 12757248.},
/* GFLOPS 0.007 x 2 = 0.013 */ {{1, 1}, {{1, 16, 56, 56}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6623232.},
/* GFLOPS 0.007 x 2 = 0.013 */ {{1, 1}, {{1, 128, 80, 80}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6579200.},
/* GFLOPS 0.007 x 2 = 0.013 */ {{1, 1}, {{1, 32, 28, 28}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6522880.},
/* GFLOPS 0.006 x 2 = 0.013 */ {{1, 1}, {{1, 64, 14, 14}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6472704.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.006 x 2 = 0.013 */ {{1, 1}, {{1, 24, 128, 128}}, 8, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6422528.},
/* GFLOPS 0.002 x 6 = 0.013 */ {{1, 1}, {{1, 8, 128, 128}}, 8, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2228224.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 992, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 12449920.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 480, 14, 14}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 12054784.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 960, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 12048512.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 32, 75, 75}}, 128, 1, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", false, 12014080.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 320, 12, 12}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 11814912.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 640, 6, 6}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 11805696.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{1, 1}, {{1, 928, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 11647104.},
/* GFLOPS 0.011 x 1 = 0.011 */ {{1, 1}, {{1, 896, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 11245696.},
/* GFLOPS 0.011 x 1 = 0.011 */ {{1, 1}, {{1, 864, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 10844288.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.005 x 2 = 0.011 */ {{1, 1}, {{1, 144, 28, 28}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 5437824.},
/* GFLOPS 0.005 x 2 = 0.011 */ {{1, 1}, {{1, 128, 24, 24}}, 36, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 5329152.},
/* GFLOPS 0.010 x 1 = 0.010 */ {{1, 1}, {{1, 832, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 10442880.},
/* GFLOPS 0.010 x 1 = 0.010 */ {{1, 1}, {{1, 800, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 10041472.},
/* GFLOPS 0.010 x 1 = 0.010 */ {{1, 1}, {{1, 384, 14, 14}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 9646336.},
/* GFLOPS 0.010 x 1 = 0.010 */ {{1, 1}, {{1, 768, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 9640064.},
/* GFLOPS 0.009 x 1 = 0.009 */ {{1, 1}, {{1, 736, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 9238656.},
/* GFLOPS 0.009 x 1 = 0.009 */ {{1, 1}, {{1, 704, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 8837248.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.005 x 2 = 0.009 */ {{1, 1}, {{1, 96, 32, 32}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4743168.},
/* GFLOPS 0.005 x 2 = 0.009 */ {{1, 1}, {{1, 4, 128, 256}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 4718592.},
/* GFLOPS 0.004 x 2 = 0.009 */ {{1, 1}, {{1, 16, 64, 64}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4325376.},
/* GFLOPS 0.004 x 2 = 0.009 */ {{1, 1}, {{1, 32, 64, 64}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4259840.},
/* GFLOPS 0.008 x 1 = 0.008 */ {{1, 1}, {{1, 672, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 8435840.},
/* GFLOPS 0.008 x 1 = 0.008 */ {{1, 1}, {{1, 128, 32, 64}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 8421376.},
/* GFLOPS 0.008 x 1 = 0.008 */ {{1, 1}, {{1, 608, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 7633024.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.004 x 2 = 0.008 */ {{1, 1}, {{1, 384, 7, 7}}, 112, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4220272.},
/* GFLOPS 0.004 x 2 = 0.008 */ {{1, 1}, {{1, 336, 8, 8}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4134912.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 640, 6, 6}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7378560.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 384, 14, 14}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7234752.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 576, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 7231616.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 256, 12, 12}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 7091712.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 544, 7, 7}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 6830208.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 528, 14, 14}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6629504.},
/* GFLOPS 0.007 x 1 = 0.007 */ {{1, 1}, {{1, 256, 5, 5}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 6566400.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.004 x 2 = 0.007 */ {{1, 1}, {{1, 48, 14, 14}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3650304.},
/* GFLOPS 0.003 x 2 = 0.007 */ {{1, 1}, {{1, 64, 80, 80}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3302400.},
/* GFLOPS 0.006 x 1 = 0.006 */ {{1, 1}, {{1, 64, 56, 56}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6472704.},
/* GFLOPS 0.006 x 1 = 0.006 */ {{1, 1}, {{1, 512, 14, 14}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6428800.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.003 x 2 = 0.006 */ {{1, 1}, {{1, 144, 16, 16}}, 40, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2959360.},
/* GFLOPS 0.005 x 1 = 0.005 */ {{1, 1}, {{1, 192, 12, 12}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 5322240.},
/* GFLOPS 0.005 x 1 = 0.005 */ {{1, 1}, {{1, 1024, 10, 10}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4917600.},
/* GFLOPS 0.005 x 1 = 0.005 */ {{1, 1}, {{1, 256, 14, 14}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4826304.},
/* GFLOPS 0.005 x 1 = 0.005 */ {{1, 1}, {{1, 508, 14, 14}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 4783968.},
/* GFLOPS 0.005 x 1 = 0.005 */ {{1, 1}, {{1, 64, 32, 32}}, 36, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 4755456.},
/* GFLOPS 0.005 x 1 = 0.005 */ {{1, 1}, {{1, 1024, 3, 3}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4720896.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.003 x 2 = 0.005 */ {{1, 1}, {{1, 144, 14, 14}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2718912.},
/* GFLOPS 0.002 x 2 = 0.005 */ {{1, 1}, {{1, 576, 8, 8}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2361344.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{1, 1}, {{1, 512, 19, 19}}, 12, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4440300.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{1, 1}, {{1, 640, 6, 6}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4427136.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{1, 1}, {{1, 16, 128, 256}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 4325376.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{1, 1}, {{1, 64, 64, 128}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 4227072.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{1, 1}, {{1, 832, 7, 7}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3916080.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{1, 1}, {{1, 192, 12, 12}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3548160.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.002 x 2 = 0.004 */ {{1, 1}, {{1, 240, 48, 48}}, 2, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2216448.},
/* GFLOPS 0.002 x 2 = 0.004 */ {{1, 1}, {{1, 32, 64, 64}}, 8, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2129920.},
/* GFLOPS 0.002 x 2 = 0.004 */ {{1, 1}, {{1, 64, 40, 40}}, 10, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2064000.},
/* GFLOPS 0.001 x 6 = 0.004 */ {{1, 1}, {{1, 32, 24, 24}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 599040.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 736, 3, 3}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3393792.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 512, 5, 5}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3280000.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 512, 5, 5}}, 126, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3228750.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 480, 14, 14}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 3013696.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 320, 12, 12}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2953728.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 640, 6, 6}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2951424.},
/* GFLOPS 0.003 x 1 = 0.003 */ {{1, 1}, {{1, 832, 7, 7}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2610720.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.002 x 2 = 0.003 */ {{1, 1}, {{1, 128, 80, 80}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1644800.},
/* GFLOPS 0.002 x 2 = 0.003 */ {{1, 1}, {{1, 128, 40, 40}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1644800.},
/* GFLOPS 0.002 x 2 = 0.003 */ {{1, 1}, {{1, 24, 32, 32}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1605632.},
/* GFLOPS 0.001 x 4 = 0.003 */ {{1, 1}, {{1, 64, 80, 80}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 825600.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{1, 1}, {{1, 256, 12, 12}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2363904.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{1, 1}, {{1, 528, 4, 4}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 2164736.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{1, 1}, {{1, 508, 4, 4}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 2082816.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{1, 1}, {{1, 1024, 1, 1}}, 1000, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2049000.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{1, 1}, {{1, 64, 4, 4}}, 810, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 1671840.},
/* GFLOPS 0.002 x 1 = 0.002 */ {{1, 1}, {{1, 32, 80, 80}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1664000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.001 x 2 = 0.002 */ {{1, 1}, {{1, 16, 4, 8400}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", false, 1108800.},
/* GFLOPS 0.001 x 2 = 0.002 */ {{1, 1}, {{1, 56, 16, 16}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 925696.},
/* GFLOPS 0.001 x 2 = 0.002 */ {{1, 1}, {{1, 64, 40, 40}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 825600.},
/* GFLOPS 0.001 x 4 = 0.002 */ {{1, 1}, {{1, 64, 12, 12}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 594432.},
/* GFLOPS 0.000 x 8 = 0.002 */ {{1, 1}, {{1, 192, 2, 2}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 295680.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{1, 1}, {{1, 640, 6, 6}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1475712.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{1, 1}, {{1, 256, 2, 2}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1120392.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{1, 1}, {{1, 192, 12, 12}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 887040.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{1, 1}, {{1, 640, 2, 2}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 655872.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{1, 1}, {{1, 512, 5, 5}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 615000.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.001 x 2 = 0.001 */ {{1, 1}, {{1, 256, 3, 3}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 590976.},
/* GFLOPS 0.001 x 2 = 0.001 */ {{1, 1}, {{1, 64, 20, 20}}, 10, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 516000.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{1, 1}, {{1, 256, 12, 12}}, 6, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 443232.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{1, 1}, {{1, 32, 80, 80}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 416000.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{1, 1}, {{1, 128, 40, 40}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 411200.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{1, 1}, {{1, 128, 20, 20}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 411200.},
/* GFLOPS 0.000 x 4 = 0.001 */ {{1, 1}, {{1, 64, 12, 12}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 297216.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{1, 1}, {{1, 128, 6, 6}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 296064.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{1, 1}, {{1, 128, 24, 24}}, 2, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 296064.},
/* GFLOPS 0.000 x 4 = 0.001 */ {{1, 1}, {{1, 64, 40, 40}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 206400.},
/* GFLOPS 0.000 x 9 = 0.001 */ {{1, 1}, {{1, 64, 4, 4}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 132096.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 192, 5, 5}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 308000.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 128, 2, 2}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 263168.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 256, 2, 2}}, 126, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 258552.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 64, 20, 20}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 206400.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 1024, 1, 1}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 196704.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 128, 3, 3}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 148032.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 128, 6, 6}}, 16, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 148032.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 736, 1, 1}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 141408.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 128, 1, 1}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 140322.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 256, 2, 2}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 131328.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{1, 1}, {{1, 48, 1, 1}}, 1152, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 111744.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{1, 1}, {{1, 1152, 1, 1}}, 48, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 110640.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 128, 20, 20}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 102800.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 64, 4, 4}}, 36, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "VALID", true, 74304.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{1, 1}, {{1, 64, 20, 20}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 51600.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 256, 2, 2}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 49248.},
/* GFLOPS 0.000 x 3 = 0.000 */ {{1, 1}, {{1, 28, 1, 1}}, 672, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 38304.},
/* GFLOPS 0.000 x 3 = 0.000 */ {{1, 1}, {{1, 672, 1, 1}}, 28, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 37660.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 128, 1, 1}}, 126, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 32382.},
/* GFLOPS 0.000 x 3 = 0.000 */ {{1, 1}, {{1, 20, 1, 1}}, 480, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 19680.},
/* GFLOPS 0.000 x 3 = 0.000 */ {{1, 1}, {{1, 480, 1, 1}}, 20, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 19220.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 64, 1, 1}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 16512.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 128, 1, 1}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 6168.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 10, 1, 1}}, 240, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 5040.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 240, 1, 1}}, 10, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 4810.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.000 x 8 = 0.000 */ {{1, 1}, {{1, 24, 1, 1}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4704.},
/* GFLOPS 0.000 x 8 = 0.000 */ {{1, 1}, {{1, 96, 1, 1}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4632.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{1, 1}, {{1, 4, 16, 16}}, 2, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 4608.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 4, 16, 16}}, 1, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2304.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 6, 1, 1}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1872.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{1, 1}, {{1, 144, 1, 1}}, 6, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1734.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 4, 1, 1}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 864.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 96, 1, 1}}, 4, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 772.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 8, 1, 1}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 544.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{1, 1}, {{1, 32, 1, 1}}, 8, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 520.},
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
/* GFLOPS 0.000 x 8 = 0.000 */ {{1, 1}, {{1, 6, 1, 1}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 312.},
/* GFLOPS 0.000 x 8 = 0.000 */ {{1, 1}, {{1, 24, 1, 1}}, 6, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 294.},
};
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
static const ConvParam_t testConvolution_3x3S1D1_Configs[] = {
/* GFLOPS 1.596 x 14 = 22.338 */ {{3, 3}, {{1, 128, 52, 52}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 1595576320.},
/* GFLOPS 1.595 x 12 = 19.141 */ {{3, 3}, {{1, 512, 13, 13}}, 1024, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 1595057152.},
/* GFLOPS 6.814 x 2 = 13.629 */ {{3, 3}, {{1, 512, 38, 38}}, 512, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 6814386176.},
/* GFLOPS 6.637 x 2 = 13.274 */ {{3, 3}, {{1, 256, 75, 75}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 6636960000.},
/* GFLOPS 10.701 x 1 = 10.701 */ {{3, 3}, {{1, 512, 38, 38}}, 804, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 10700715792.},
/* GFLOPS 10.087 x 1 = 10.087 */ {{3, 3}, {{1, 576, 38, 50}}, 512, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 10086963200.},
/* GFLOPS 9.993 x 1 = 9.993 */ {{3, 3}, {{1, 64, 368, 368}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 9993207808.},
/* GFLOPS 9.989 x 1 = 9.989 */ {{3, 3}, {{1, 128, 184, 184}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 9988874240.},
/* GFLOPS 4.247 x 2 = 8.494 */ {{3, 3}, {{1, 480, 32, 32}}, 480, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 4247224320.},
/* GFLOPS 8.025 x 1 = 8.025 */ {{3, 3}, {{1, 1024, 19, 19}}, 1206, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 8025101478.},
/* GFLOPS 6.641 x 1 = 6.641 */ {{3, 3}, {{1, 64, 300, 300}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 6641280000.},
/* GFLOPS 6.641 x 1 = 6.641 */ {{3, 3}, {{1, 64, 150, 200}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 6641280000.},
/* GFLOPS 6.638 x 1 = 6.638 */ {{3, 3}, {{1, 128, 150, 150}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 6638400000.},
/* GFLOPS 6.118 x 1 = 6.118 */ {{3, 3}, {{1, 144, 128, 128}}, 144, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 6117654528.},
/* GFLOPS 6.116 x 1 = 6.116 */ {{3, 3}, {{1, 1152, 16, 16}}, 1152, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 6115590144.},
/* GFLOPS 4.997 x 1 = 4.997 */ {{3, 3}, {{1, 64, 184, 184}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 4996603904.},
/* GFLOPS 4.993 x 1 = 4.993 */ {{3, 3}, {{1, 512, 46, 46}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 4992812032.},
/* GFLOPS 3.408 x 1 = 3.408 */ {{3, 3}, {{1, 256, 38, 38}}, 512, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 3407562752.},
/* GFLOPS 0.302 x 11 = 3.325 */ {{3, 3}, {{1, 64, 64, 64}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 302252032.},
/* GFLOPS 3.321 x 1 = 3.321 */ {{3, 3}, {{1, 64, 150, 150}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 3320640000.},
/* GFLOPS 0.830 x 4 = 3.321 */ {{3, 3}, {{1, 64, 75, 100}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 830160000.},
/* GFLOPS 3.319 x 1 = 3.319 */ {{3, 3}, {{1, 128, 75, 75}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 3319200000.},
/* GFLOPS 1.598 x 2 = 3.195 */ {{3, 3}, {{1, 32, 208, 208}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 1597652992.},
/* GFLOPS 1.596 x 2 = 3.193 */ {{3, 3}, {{1, 64, 104, 104}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 1596268544.},
/* GFLOPS 1.405 x 2 = 2.810 */ {{3, 3}, {{1, 96, 184, 184}}, 24, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1404888576.},
/* GFLOPS 0.798 x 3 = 2.394 */ {{3, 3}, {{1, 64, 104, 104}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 798134272.},
/* GFLOPS 2.255 x 1 = 2.255 */ {{3, 3}, {{1, 128, 80, 100}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2255285760.},
/* GFLOPS 2.153 x 1 = 2.153 */ {{3, 3}, {{1, 128, 78, 98}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2152611840.},
/* GFLOPS 2.052 x 1 = 2.052 */ {{3, 3}, {{1, 128, 76, 96}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 2052298240.},
/* GFLOPS 1.022 x 2 = 2.044 */ {{3, 3}, {{1, 576, 19, 19}}, 273, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1021896057.},
/* GFLOPS 1.954 x 1 = 1.954 */ {{3, 3}, {{1, 128, 74, 94}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1954344960.},
/* GFLOPS 1.888 x 1 = 1.888 */ {{3, 3}, {{1, 1024, 10, 10}}, 1024, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1887539200.},
/* GFLOPS 1.859 x 1 = 1.859 */ {{3, 3}, {{1, 128, 72, 92}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1858752000.},
/* GFLOPS 1.766 x 1 = 1.766 */ {{3, 3}, {{1, 128, 70, 90}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1765519360.},
/* GFLOPS 1.704 x 1 = 1.704 */ {{3, 3}, {{1, 256, 38, 38}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1703781376.},
/* GFLOPS 1.675 x 1 = 1.675 */ {{3, 3}, {{1, 128, 68, 88}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1674647040.},
/* GFLOPS 1.660 x 1 = 1.660 */ {{3, 3}, {{1, 128, 75, 75}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1659600000.},
/* GFLOPS 1.586 x 1 = 1.586 */ {{3, 3}, {{1, 128, 66, 86}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1586135040.},
/* GFLOPS 1.500 x 1 = 1.500 */ {{3, 3}, {{1, 128, 64, 84}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1499983360.},
/* GFLOPS 0.711 x 2 = 1.422 */ {{3, 3}, {{1, 12, 320, 320}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 711065600.},
/* GFLOPS 1.416 x 1 = 1.416 */ {{3, 3}, {{1, 128, 62, 82}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 1416192000.},
/* GFLOPS 0.701 x 2 = 1.401 */ {{3, 3}, {{1, 128, 38, 50}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 700720000.},
/* GFLOPS 0.231 x 6 = 1.388 */ {{3, 3}, {{1, 128, 56, 56}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 231311360.},
/* GFLOPS 0.231 x 6 = 1.388 */ {{3, 3}, {{1, 256, 14, 14}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 231261184.},
/* GFLOPS 0.420 x 3 = 1.261 */ {{3, 3}, {{1, 96, 38, 50}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 420492800.},
/* GFLOPS 1.258 x 1 = 1.258 */ {{3, 3}, {{1, 1280, 10, 10}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1258038600.},
/* GFLOPS 1.248 x 1 = 1.248 */ {{3, 3}, {{1, 256, 46, 46}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1248338432.},
/* GFLOPS 1.245 x 1 = 1.245 */ {{3, 3}, {{1, 64, 75, 75}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1245240000.},
/* GFLOPS 1.210 x 1 = 1.210 */ {{3, 3}, {{1, 32, 256, 256}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1210056704.},
/* GFLOPS 1.196 x 1 = 1.196 */ {{3, 3}, {{1, 384, 26, 26}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 1196336128.},
/* GFLOPS 0.590 x 2 = 1.181 */ {{3, 3}, {{1, 64, 80, 80}}, 80, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 590336000.},
/* GFLOPS 0.561 x 2 = 1.121 */ {{3, 3}, {{1, 128, 38, 50}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 560576000.},
/* GFLOPS 1.112 x 1 = 1.112 */ {{3, 3}, {{1, 512, 10, 10}}, 1206, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1111570200.},
/* GFLOPS 0.076 x 14 = 1.058 */ {{3, 3}, {{1, 64, 32, 32}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 75563008.},
/* GFLOPS 1.051 x 1 = 1.051 */ {{3, 3}, {{1, 160, 38, 50}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1050988800.},
/* GFLOPS 1.006 x 1 = 1.006 */ {{3, 3}, {{1, 1024, 10, 10}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1006441800.},
/* GFLOPS 0.473 x 2 = 0.945 */ {{3, 3}, {{1, 32, 160, 160}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 472678400.},
/* GFLOPS 0.472 x 2 = 0.944 */ {{3, 3}, {{1, 512, 4, 25}}, 512, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 471910400.},
/* GFLOPS 0.841 x 1 = 0.841 */ {{3, 3}, {{1, 128, 38, 50}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 840864000.},
/* GFLOPS 0.415 x 2 = 0.831 */ {{3, 3}, {{1, 32, 150, 150}}, 32, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 415440000.},
/* GFLOPS 0.118 x 6 = 0.710 */ {{3, 3}, {{1, 16, 160, 160}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 118374400.},
/* GFLOPS 0.351 x 2 = 0.702 */ {{3, 3}, {{1, 96, 92, 92}}, 24, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 351222144.},
/* GFLOPS 0.694 x 1 = 0.694 */ {{3, 3}, {{1, 64, 56, 56}}, 192, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 694235136.},
/* GFLOPS 0.231 x 3 = 0.694 */ {{3, 3}, {{1, 512, 7, 7}}, 512, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 231236096.},
/* GFLOPS 0.160 x 4 = 0.639 */ {{3, 3}, {{1, 64, 38, 38}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 159833472.},
/* GFLOPS 0.305 x 2 = 0.609 */ {{3, 3}, {{1, 3, 416, 416}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 304578560.},
/* GFLOPS 0.295 x 2 = 0.590 */ {{3, 3}, {{1, 128, 40, 40}}, 80, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 295040000.},
/* GFLOPS 0.553 x 1 = 0.553 */ {{3, 3}, {{1, 64, 75, 100}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 553440000.},
/* GFLOPS 0.477 x 1 = 0.477 */ {{3, 3}, {{1, 3, 368, 368}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 476692480.},
/* GFLOPS 0.236 x 2 = 0.472 */ {{3, 3}, {{1, 128, 40, 40}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 236032000.},
/* GFLOPS 0.236 x 2 = 0.472 */ {{3, 3}, {{1, 256, 8, 25}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 235980800.},
/* GFLOPS 0.236 x 2 = 0.472 */ {{3, 3}, {{1, 256, 4, 25}}, 512, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 235980800.},
/* GFLOPS 0.449 x 1 = 0.449 */ {{3, 3}, {{1, 384, 13, 13}}, 384, 2, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 448626048.},
/* GFLOPS 0.426 x 1 = 0.426 */ {{3, 3}, {{1, 128, 38, 38}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 426037760.},
/* GFLOPS 0.399 x 1 = 0.399 */ {{3, 3}, {{1, 256, 13, 13}}, 512, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 398807552.},
/* GFLOPS 0.200 x 2 = 0.399 */ {{3, 3}, {{1, 32, 104, 104}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 199706624.},
/* GFLOPS 0.319 x 1 = 0.319 */ {{3, 3}, {{1, 192, 19, 19}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 319482112.},
/* GFLOPS 0.317 x 1 = 0.317 */ {{3, 3}, {{1, 3, 300, 300}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 316800000.},
/* GFLOPS 0.299 x 1 = 0.299 */ {{3, 3}, {{1, 256, 13, 13}}, 384, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 299105664.},
/* GFLOPS 0.299 x 1 = 0.299 */ {{3, 3}, {{1, 384, 13, 13}}, 256, 2, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 299084032.},
/* GFLOPS 0.147 x 2 = 0.295 */ {{3, 3}, {{1, 256, 20, 20}}, 80, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 147488000.},
/* GFLOPS 0.133 x 2 = 0.266 */ {{3, 3}, {{1, 128, 19, 19}}, 160, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 133136800.},
/* GFLOPS 0.038 x 7 = 0.265 */ {{3, 3}, {{1, 16, 64, 128}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 37879808.},
/* GFLOPS 0.011 x 24 = 0.256 */ {{3, 3}, {{1, 16, 48, 48}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "SAME", true, 10653696.},
/* GFLOPS 0.011 x 24 = 0.255 */ {{3, 3}, {{1, 32, 24, 24}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "SAME", true, 10635264.},
/* GFLOPS 0.126 x 2 = 0.252 */ {{3, 3}, {{1, 512, 5, 5}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 125812050.},
/* GFLOPS 0.118 x 2 = 0.236 */ {{3, 3}, {{1, 64, 16, 50}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 118067200.},
/* GFLOPS 0.118 x 2 = 0.236 */ {{3, 3}, {{1, 128, 8, 25}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 118016000.},
/* GFLOPS 0.118 x 2 = 0.236 */ {{3, 3}, {{1, 256, 20, 20}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 117990400.},
/* GFLOPS 0.111 x 2 = 0.221 */ {{3, 3}, {{1, 192, 10, 10}}, 320, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 110624000.},
/* GFLOPS 0.213 x 1 = 0.213 */ {{3, 3}, {{1, 256, 19, 19}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 212972672.},
/* GFLOPS 0.213 x 1 = 0.213 */ {{3, 3}, {{1, 512, 38, 38}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 212949568.},
/* GFLOPS 0.210 x 1 = 0.210 */ {{3, 3}, {{1, 64, 38, 50}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 210307200.},
/* GFLOPS 0.104 x 2 = 0.208 */ {{3, 3}, {{1, 32, 75, 75}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 103860000.},
/* GFLOPS 0.200 x 1 = 0.200 */ {{3, 3}, {{1, 160, 19, 19}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 199687872.},
/* GFLOPS 0.038 x 5 = 0.189 */ {{3, 3}, {{1, 32, 32, 64}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 37814272.},
/* GFLOPS 0.090 x 2 = 0.181 */ {{3, 3}, {{1, 224, 10, 10}}, 224, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 90339200.},
/* GFLOPS 0.088 x 2 = 0.176 */ {{3, 3}, {{1, 96, 46, 46}}, 24, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 87805536.},
/* GFLOPS 0.160 x 1 = 0.160 */ {{3, 3}, {{1, 128, 19, 19}}, 192, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 159764160.},
/* GFLOPS 0.146 x 1 = 0.146 */ {{3, 3}, {{1, 144, 14, 14}}, 288, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 146369664.},
/* GFLOPS 0.139 x 1 = 0.139 */ {{3, 3}, {{1, 256, 5, 5}}, 1206, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 138961350.},
/* GFLOPS 0.128 x 1 = 0.128 */ {{3, 3}, {{1, 64, 24, 24}}, 192, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 127512576.},
/* GFLOPS 0.058 x 2 = 0.116 */ {{3, 3}, {{1, 16, 56, 56}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 58003456.},
/* GFLOPS 0.058 x 2 = 0.116 */ {{3, 3}, {{1, 32, 28, 28}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 57903104.},
/* GFLOPS 0.058 x 2 = 0.116 */ {{3, 3}, {{1, 64, 14, 14}}, 256, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 57852928.},
/* GFLOPS 0.045 x 2 = 0.090 */ {{3, 3}, {{1, 576, 19, 19}}, 12, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 44918508.},
/* GFLOPS 0.089 x 1 = 0.089 */ {{3, 3}, {{1, 112, 14, 14}}, 224, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 88554368.},
/* GFLOPS 0.043 x 2 = 0.085 */ {{3, 3}, {{1, 32, 48, 48}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "SAME", true, 42541056.},
/* GFLOPS 0.011 x 8 = 0.085 */ {{3, 3}, {{1, 128, 6, 6}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "SAME", true, 10621440.},
/* GFLOPS 0.077 x 1 = 0.077 */ {{3, 3}, {{1, 192, 10, 10}}, 224, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 77436800.},
/* GFLOPS 0.070 x 1 = 0.070 */ {{3, 3}, {{1, 96, 14, 14}}, 208, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 70487872.},
/* GFLOPS 0.069 x 1 = 0.069 */ {{3, 3}, {{1, 96, 14, 14}}, 204, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 69132336.},
/* GFLOPS 0.065 x 1 = 0.065 */ {{3, 3}, {{1, 192, 7, 7}}, 384, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 65046912.},
/* GFLOPS 0.065 x 1 = 0.065 */ {{3, 3}, {{1, 160, 10, 10}}, 224, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 64534400.},
/* GFLOPS 0.033 x 2 = 0.065 */ {{3, 3}, {{1, 48, 14, 14}}, 192, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 32551680.},
/* GFLOPS 0.032 x 2 = 0.064 */ {{3, 3}, {{1, 96, 12, 12}}, 128, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 31868928.},
/* GFLOPS 0.004 x 16 = 0.058 */ {{3, 3}, {{1, 128, 7, 7}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 3614240.},
/* GFLOPS 0.055 x 1 = 0.055 */ {{3, 3}, {{1, 1280, 10, 10}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 55298400.},
/* GFLOPS 0.053 x 1 = 0.053 */ {{3, 3}, {{1, 128, 38, 38}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 53254720.},
/* GFLOPS 0.045 x 1 = 0.045 */ {{3, 3}, {{1, 160, 7, 7}}, 320, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 45174080.},
/* GFLOPS 0.044 x 1 = 0.044 */ {{3, 3}, {{1, 1024, 10, 10}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 44239200.},
/* GFLOPS 0.022 x 2 = 0.044 */ {{3, 3}, {{1, 3, 112, 112}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 22077440.},
/* GFLOPS 0.022 x 2 = 0.044 */ {{3, 3}, {{1, 96, 23, 23}}, 24, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 21951384.},
/* GFLOPS 0.007 x 6 = 0.043 */ {{3, 3}, {{1, 48, 16, 16}}, 32, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 7086080.},
/* GFLOPS 0.040 x 1 = 0.040 */ {{3, 3}, {{1, 64, 19, 19}}, 96, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 39958368.},
/* GFLOPS 0.027 x 1 = 0.027 */ {{3, 3}, {{1, 128, 38, 38}}, 8, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 26627360.},
/* GFLOPS 0.010 x 2 = 0.020 */ {{3, 3}, {{1, 256, 2, 2}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 10066056.},
/* GFLOPS 0.010 x 2 = 0.019 */ {{3, 3}, {{1, 8, 256, 256}}, 1, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 9502720.},
/* GFLOPS 0.002 x 6 = 0.014 */ {{3, 3}, {{1, 32, 16, 16}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 2363392.},
/* GFLOPS 0.001 x 11 = 0.013 */ {{3, 3}, {{1, 64, 4, 4}}, 64, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", false, 1180672.},
/* GFLOPS 0.012 x 1 = 0.012 */ {{3, 3}, {{1, 96, 6, 6}}, 192, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 11950848.},
/* GFLOPS 0.006 x 2 = 0.012 */ {{3, 3}, {{1, 96, 3, 3}}, 384, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 5975424.},
/* GFLOPS 0.006 x 2 = 0.011 */ {{3, 3}, {{1, 512, 5, 5}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 5530200.},
/* GFLOPS 0.010 x 1 = 0.010 */ {{3, 3}, {{1, 4, 128, 256}}, 4, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 9568256.},
/* GFLOPS 0.006 x 1 = 0.006 */ {{3, 3}, {{1, 256, 10, 10}}, 12, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 5530800.},
/* GFLOPS 0.004 x 1 = 0.004 */ {{3, 3}, {{1, 256, 1, 1}}, 804, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 3705636.},
/* GFLOPS 0.001 x 6 = 0.004 */ {{3, 3}, {{1, 16, 16, 16}}, 8, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 591872.},
/* GFLOPS 0.001 x 2 = 0.003 */ {{3, 3}, {{1, 128, 1, 1}}, 546, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 1258530.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{3, 3}, {{1, 128, 5, 5}}, 12, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 691500.},
/* GFLOPS 0.001 x 1 = 0.001 */ {{3, 3}, {{1, 128, 3, 3}}, 256, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 590080.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{3, 3}, {{1, 256, 2, 2}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 442464.},
/* GFLOPS 0.000 x 6 = 0.001 */ {{3, 3}, {{1, 8, 16, 16}}, 4, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 148480.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{3, 3}, {{1, 64, 3, 3}}, 128, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "", true, 147584.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{3, 3}, {{1, 256, 1, 1}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 73744.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{3, 3}, {{1, 128, 1, 1}}, 24, 1, {1, 1}, {1, 1}, {0, 0}, {0, 0}, "SAME", true, 55320.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{3, 3}, {{1, 128, 1, 1}}, 16, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 36880.},
/* GFLOPS 0.000 x 1 = 0.000 */ {{3, 3}, {{1, 128, 1, 1}}, 8, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 18440.},
};
static const ConvParam_t testConvolution_Depthwise_Configs[] = {
/* GFLOPS 6.525 x 14 = 91.357 */ {{5, 5}, {{1, 1632, 7, 7}}, 1632, 1632, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 6525468768.},
/* GFLOPS 6.094 x 4 = 24.377 */ {{5, 5}, {{1, 480, 23, 23}}, 480, 480, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 6094333920.},
/* GFLOPS 0.925 x 10 = 9.249 */ {{3, 3}, {{1, 512, 14, 14}}, 512, 512, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 924944384.},
/* GFLOPS 4.301 x 2 = 8.601 */ {{3, 3}, {{1, 336, 46, 46}}, 336, 336, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 4300693824.},
/* GFLOPS 1.734 x 4 = 6.936 */ {{5, 5}, {{1, 64, 92, 92}}, 64, 64, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 1733968896.},
/* GFLOPS 1.106 x 6 = 6.638 */ {{5, 5}, {{1, 672, 7, 7}}, 672, 672, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 1106413728.},
/* GFLOPS 1.062 x 6 = 6.370 */ {{5, 5}, {{1, 576, 8, 8}}, 576, 576, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 1061720064.},
/* GFLOPS 2.986 x 2 = 5.973 */ {{5, 5}, {{1, 336, 46, 46}}, 336, 336, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 2986276944.},
/* GFLOPS 1.445 x 4 = 5.781 */ {{5, 5}, {{1, 336, 16, 16}}, 336, 336, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 1445154816.},
/* GFLOPS 0.472 x 10 = 4.719 */ {{5, 5}, {{1, 128, 24, 24}}, 128, 128, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 471932928.},
/* GFLOPS 2.194 x 2 = 4.389 */ {{3, 3}, {{1, 240, 46, 46}}, 240, 240, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 2194376640.},
/* GFLOPS 1.889 x 2 = 3.778 */ {{3, 3}, {{1, 64, 160, 160}}, 64, 64, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1889075200.},
/* GFLOPS 1.659 x 2 = 3.318 */ {{5, 5}, {{1, 960, 14, 14}}, 960, 960, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1658914560.},
/* GFLOPS 0.472 x 6 = 2.834 */ {{3, 3}, {{1, 64, 80, 80}}, 64, 64, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 472268800.},
/* GFLOPS 0.472 x 6 = 2.832 */ {{5, 5}, {{1, 64, 48, 48}}, 64, 64, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 472006656.},
/* GFLOPS 1.344 x 2 = 2.688 */ {{5, 5}, {{1, 192, 56, 56}}, 192, 192, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 1343832768.},
/* GFLOPS 0.382 x 6 = 2.293 */ {{3, 3}, {{1, 576, 8, 8}}, 576, 576, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 382242816.},
/* GFLOPS 1.130 x 2 = 2.259 */ {{3, 3}, {{1, 144, 112, 112}}, 144, 144, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 1129510800.},
/* GFLOPS 1.062 x 2 = 2.124 */ {{5, 5}, {{1, 144, 32, 32}}, 144, 144, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 1061830656.},
/* GFLOPS 0.976 x 2 = 1.953 */ {{3, 3}, {{1, 40, 184, 184}}, 40, 40, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 976407040.},
/* GFLOPS 0.473 x 4 = 1.891 */ {{3, 3}, {{1, 32, 160, 160}}, 32, 32, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 472678400.},
/* GFLOPS 0.925 x 2 = 1.850 */ {{3, 3}, {{1, 128, 56, 56}}, 128, 128, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 925245440.},
/* GFLOPS 0.925 x 2 = 1.850 */ {{3, 3}, {{1, 256, 28, 28}}, 256, 256, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 925044736.},
/* GFLOPS 0.925 x 2 = 1.850 */ {{3, 3}, {{1, 1024, 7, 7}}, 1024, 1024, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", false, 924894208.},
/* GFLOPS 1.704 x 1 = 1.704 */ {{3, 3}, {{1, 256, 38, 38}}, 256, 256, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1703781376.},
/* GFLOPS 1.660 x 1 = 1.660 */ {{3, 3}, {{1, 128, 75, 75}}, 128, 128, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1659600000.},
/* GFLOPS 0.813 x 2 = 1.626 */ {{5, 5}, {{1, 144, 28, 28}}, 144, 144, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 812964096.},
/* GFLOPS 0.813 x 2 = 1.626 */ {{5, 5}, {{1, 288, 14, 14}}, 288, 288, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 812907648.},
/* GFLOPS 0.737 x 2 = 1.475 */ {{5, 5}, {{1, 240, 16, 16}}, 240, 240, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 737341440.},
/* GFLOPS 0.351 x 4 = 1.405 */ {{3, 3}, {{1, 96, 46, 46}}, 96, 96, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 351222144.},
/* GFLOPS 0.680 x 2 = 1.360 */ {{3, 3}, {{1, 96, 64, 64}}, 96, 96, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 679870464.},
/* GFLOPS 0.677 x 2 = 1.355 */ {{5, 5}, {{1, 40, 184, 184}}, 40, 40, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 677458560.},
/* GFLOPS 0.625 x 2 = 1.250 */ {{3, 3}, {{1, 32, 368, 368}}, 32, 32, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 625117184.},
/* GFLOPS 0.293 x 4 = 1.171 */ {{3, 3}, {{1, 288, 14, 14}}, 288, 288, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 292682880.},
/* GFLOPS 0.549 x 2 = 1.097 */ {{3, 3}, {{1, 120, 92, 92}}, 120, 120, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 548721120.},
/* GFLOPS 0.265 x 4 = 1.062 */ {{3, 3}, {{1, 240, 16, 16}}, 240, 240, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 265482240.},
/* GFLOPS 0.473 x 2 = 0.947 */ {{3, 3}, {{1, 16, 320, 320}}, 16, 16, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 473497600.},
/* GFLOPS 0.472 x 2 = 0.944 */ {{5, 5}, {{1, 96, 64, 64}}, 96, 96, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 471957504.},
/* GFLOPS 0.398 x 2 = 0.797 */ {{3, 3}, {{1, 672, 7, 7}}, 672, 672, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 398330016.},
/* GFLOPS 0.361 x 2 = 0.723 */ {{5, 5}, {{1, 336, 16, 16}}, 336, 336, {2, 2}, {1, 1}, {2, 2}, {0, 0}, "", true, 361288704.},
/* GFLOPS 0.118 x 6 = 0.708 */ {{3, 3}, {{1, 64, 40, 40}}, 64, 64, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 118067200.},
/* GFLOPS 0.118 x 6 = 0.708 */ {{5, 5}, {{1, 256, 6, 6}}, 256, 256, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 117974016.},
/* GFLOPS 0.336 x 2 = 0.672 */ {{5, 5}, {{1, 96, 56, 56}}, 96, 96, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 335993184.},
/* GFLOPS 0.265 x 2 = 0.531 */ {{5, 5}, {{1, 384, 14, 14}}, 384, 384, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 265434624.},
/* GFLOPS 0.472 x 1 = 0.472 */ {{5, 5}, {{1, 32, 96, 96}}, 32, 32, {1, 1}, {1, 1}, {2, 2}, {0, 0}, "", true, 472154112.},
/* GFLOPS 0.232 x 2 = 0.463 */ {{3, 3}, {{1, 32, 112, 112}}, 32, 32, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 231612416.},
/* GFLOPS 0.231 x 2 = 0.463 */ {{3, 3}, {{1, 64, 112, 112}}, 64, 64, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 231411712.},
/* GFLOPS 0.231 x 2 = 0.463 */ {{3, 3}, {{1, 128, 56, 56}}, 128, 128, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 231311360.},
/* GFLOPS 0.231 x 2 = 0.463 */ {{3, 3}, {{1, 256, 28, 28}}, 256, 256, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 231261184.},
/* GFLOPS 0.231 x 2 = 0.462 */ {{3, 3}, {{1, 512, 14, 14}}, 512, 512, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", false, 231236096.},
/* GFLOPS 0.426 x 1 = 0.426 */ {{3, 3}, {{1, 128, 75, 75}}, 128, 128, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 426037760.},
/* GFLOPS 0.426 x 1 = 0.426 */ {{3, 3}, {{1, 256, 38, 38}}, 256, 256, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 425945344.},
/* GFLOPS 0.415 x 1 = 0.415 */ {{3, 3}, {{1, 32, 150, 150}}, 32, 32, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 415440000.},
/* GFLOPS 0.415 x 1 = 0.415 */ {{3, 3}, {{1, 64, 150, 150}}, 64, 64, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 415080000.},
/* GFLOPS 0.170 x 2 = 0.341 */ {{3, 3}, {{1, 24, 128, 128}}, 24, 24, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 170262528.},
/* GFLOPS 0.157 x 2 = 0.314 */ {{3, 3}, {{1, 8, 368, 368}}, 8, 8, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 157091840.},
/* GFLOPS 0.076 x 4 = 0.304 */ {{3, 3}, {{1, 8, 256, 256}}, 8, 8, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 76021760.},
/* GFLOPS 0.130 x 2 = 0.261 */ {{3, 3}, {{1, 24, 112, 112}}, 24, 24, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 130357248.},
/* GFLOPS 0.118 x 2 = 0.237 */ {{3, 3}, {{1, 16, 160, 160}}, 16, 16, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 118374400.},
/* GFLOPS 0.113 x 2 = 0.226 */ {{5, 5}, {{1, 32, 96, 96}}, 32, 32, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 113171488.},
/* GFLOPS 0.108 x 2 = 0.217 */ {{5, 5}, {{1, 64, 48, 48}}, 64, 64, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 108373056.},
/* GFLOPS 0.099 x 2 = 0.198 */ {{5, 5}, {{1, 128, 24, 24}}, 128, 128, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 99138688.},
/* GFLOPS 0.096 x 2 = 0.191 */ {{3, 3}, {{1, 144, 32, 32}}, 144, 144, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 95588352.},
/* GFLOPS 0.030 x 6 = 0.177 */ {{3, 3}, {{1, 64, 20, 20}}, 64, 64, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 29516800.},
/* GFLOPS 0.082 x 2 = 0.164 */ {{5, 5}, {{1, 256, 12, 12}}, 256, 256, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 81926400.},
/* GFLOPS 0.076 x 2 = 0.151 */ {{3, 3}, {{1, 32, 64, 64}}, 32, 32, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 75628544.},
/* GFLOPS 0.076 x 2 = 0.151 */ {{3, 3}, {{1, 32, 128, 128}}, 32, 32, {2, 2}, {1, 1}, {1, 1}, {0, 0}, "", true, 75628544.},
/* GFLOPS 0.063 x 2 = 0.126 */ {{3, 3}, {{1, 144, 28, 28}}, 144, 144, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 63103248.},
/* GFLOPS 0.019 x 6 = 0.114 */ {{3, 3}, {{1, 8, 128, 128}}, 8, 8, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 19005440.},
/* GFLOPS 0.019 x 2 = 0.038 */ {{3, 3}, {{1, 16, 64, 64}}, 16, 16, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 18939904.},
/* GFLOPS 0.014 x 2 = 0.029 */ {{3, 3}, {{1, 56, 16, 16}}, 56, 56, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 14465024.},
/* GFLOPS 0.012 x 2 = 0.023 */ {{3, 3}, {{1, 10, 80, 80}}, 10, 10, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 11584000.},
/* GFLOPS 0.011 x 2 = 0.021 */ {{3, 3}, {{1, 24, 32, 32}}, 24, 24, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 10641408.},
/* GFLOPS 0.003 x 6 = 0.016 */ {{3, 3}, {{1, 192, 2, 2}}, 192, 192, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 2654976.},
/* GFLOPS 0.004 x 2 = 0.008 */ {{3, 3}, {{1, 1, 32, 100}}, 64, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 3891200.},
/* GFLOPS 0.003 x 2 = 0.006 */ {{3, 3}, {{1, 10, 40, 40}}, 10, 10, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 2896000.},
/* GFLOPS 0.002 x 2 = 0.004 */ {{3, 3}, {{1, 4, 80, 80}}, 4, 4, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 1868800.},
/* GFLOPS 0.001 x 2 = 0.001 */ {{3, 3}, {{1, 10, 20, 20}}, 10, 10, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 724000.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{3, 3}, {{1, 192, 4, 4}}, 192, 192, {2, 2}, {1, 1}, {0, 0}, {0, 0}, "", true, 663744.},
/* GFLOPS 0.000 x 2 = 0.001 */ {{3, 3}, {{1, 4, 40, 40}}, 4, 4, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 467200.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{3, 3}, {{1, 1, 80, 80}}, 1, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 121600.},
/* GFLOPS 0.000 x 2 = 0.000 */ {{3, 3}, {{1, 4, 20, 20}}, 4, 4, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 116800.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{3, 3}, {{1, 1, 40, 40}}, 1, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 30400.},
/* GFLOPS 0.000 x 4 = 0.000 */ {{3, 3}, {{1, 1, 20, 20}}, 1, 1, {1, 1}, {1, 1}, {1, 1}, {0, 0}, "", true, 7600.},
};
struct ConvParamGenerator
{
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
ConvParamGenerator(const ConvParam_t* testConfigs, const int size): testConfigs(testConfigs), size(size)
{}
const ConvParam_t* testConfigs;
const int size;
::testing::internal::ParamGenerator<ConvParam_t> all() const
{
int NUM = size;
static size_t DNN_LIMIT_CONV = utils::getConfigurationParameterSizeT("OPENCV_TEST_DNN_LIMIT_CONV", 0);
if (DNN_LIMIT_CONV > 0)
NUM = std::min(NUM, (int)DNN_LIMIT_CONV);
std::vector<ConvParam_t> v_(NUM);
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
for (int i = 0; i < NUM; ++i) { v_[i] = testConfigs[i]; } // reduce generated code size
return ::testing::ValuesIn(v_);
}
};
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
static inline void PrintTo(const ConvParam_t& p, std::ostream* os)
{
*os << "GFLOPS=" << cv::format("%.3f", p.declared_flops * 1e-9)
<< ", K=" << (Size)p.kernel
<< ", IN={" << p.shapeIn.dims[0] << ", " << p.shapeIn.dims[1] << ", " << p.shapeIn.dims[2] << ", " << p.shapeIn.dims[3] << "}"
<< ", OCN=" << p.outCN;
if (p.groups > 1)
*os << ", G=" << p.groups;
if (((Size)p.stride).area() != 1)
*os << ", S=" << ((Size)p.stride);
if (((Size)p.dilation).area() != 1)
*os << ", D=" << ((Size)p.dilation);
if (!((Size)p.pad).empty())
*os << ", P=" << ((Size)p.pad);
if (!((Size)p.padAdjust).empty())
*os << ", PAdj=" << ((Size)p.padAdjust);
if (!((std::string)p.padMode).empty())
*os << ", PM=" << ((std::string)p.padMode);
if (p.hasBias)
*os << ", BIAS";
}
static
Net build_net(
const ConvParam_t& params, Backend backendId, Target targetId,
const std::function<void(Net&)>& configure_network_cb = std::function<void(Net&)>(),
double flops_limit_debug_long = 2e9, double flops_limit_debug_verylong = 6e9
)
{
double declared_flops = params.declared_flops;
if (flops_limit_debug_verylong > 0 && declared_flops >= flops_limit_debug_verylong)
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
if (flops_limit_debug_long > 0 && declared_flops >= flops_limit_debug_long)
applyTestTag(CV_TEST_TAG_DEBUG_LONG);
Size kernel = params.kernel;
MatShape inputShape = MatShape(params.shapeIn.dims, params.shapeIn.dims + 4);
int outChannels = params.outCN;
int groups = params.groups;
Size stride = params.stride;
Size dilation = params.dilation;
Size pad = params.pad;
Size padAdjust = params.padAdjust;
std::string padMode(params.padMode);
bool hasBias = params.hasBias;
int inChannels = inputShape[1];
Size inSize(inputShape[3], inputShape[2]);
int sz[] = {outChannels, inChannels / groups, kernel.height, kernel.width};
Mat weights(4, &sz[0], CV_32F);
randu(weights, -1.0f, 1.0f);
LayerParams lp;
lp.set("kernel_w", kernel.width);
lp.set("kernel_h", kernel.height);
lp.set("pad_w", pad.width);
lp.set("pad_h", pad.height);
if (padAdjust.width > 0 || padAdjust.height > 0)
{
lp.set("adj_w", padAdjust.width);
lp.set("adj_h", padAdjust.height);
}
if (!padMode.empty())
lp.set("pad_mode", padMode);
lp.set("stride_w", stride.width);
lp.set("stride_h", stride.height);
lp.set("dilation_w", dilation.width);
lp.set("dilation_h", dilation.height);
lp.set("num_output", outChannels);
lp.set("group", groups);
lp.set("bias_term", hasBias);
lp.type = "Convolution";
lp.name = "testLayer";
lp.blobs.push_back(weights);
if (hasBias)
{
Mat bias(1, outChannels, CV_32F);
randu(bias, -1.0f, 1.0f);
lp.blobs.push_back(bias);
}
int inpSz[] = {1, inChannels, inSize.height, inSize.width};
Mat input(4, &inpSz[0], CV_32F);
randu(input, -1.0f, 1.0f);
Net net;
net.addLayerToPrev(lp.name, lp.type, lp);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
if (configure_network_cb)
{
configure_network_cb(net);
}
net.setInput(input);
// warmup
Mat output = net.forward();
MatShape netInputShape = shape(input);
size_t weightsMemory = 0, blobsMemory = 0;
net.getMemoryConsumption(netInputShape, weightsMemory, blobsMemory);
int64 flops = net.getFLOPS(netInputShape);
CV_Assert(flops > 0);
std::cout
<< "IN=" << divUp(input.total() * input.elemSize(), 1u<<10) << " Kb " << netInputShape
<< " OUT=" << divUp(output.total() * output.elemSize(), 1u<<10) << " Kb " << shape(output)
<< " Weights(parameters): " << divUp(weightsMemory, 1u<<10) << " Kb"
<< " MFLOPS=" << flops * 1e-6 << std::endl;
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
EXPECT_NEAR(flops, declared_flops, declared_flops * 1e-6);
return net;
}
typedef tuple<ConvParam_t, tuple<Backend, Target> > ConvTestParam_t;
typedef tuple<ConvParam_t, tuple<Backend, Target>, bool> Conv3x3S1D1TestParam_t;
typedef TestBaseWithParam<ConvTestParam_t> Conv;
typedef TestBaseWithParam<ConvTestParam_t> Conv_1x1;
typedef TestBaseWithParam<Conv3x3S1D1TestParam_t> Conv_3x3S1D1;
typedef TestBaseWithParam<ConvTestParam_t> Conv_Depthwise;
PERF_TEST_P_(Conv, conv)
{
const ConvParam_t& params = get<0>(GetParam());
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
Net net = build_net(params, backendId, targetId);
TEST_CYCLE()
{
Mat res = net.forward();
}
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
SANITY_CHECK_NOTHING();
}
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
PERF_TEST_P_(Conv_1x1, conv)
{
const ConvParam_t& params = get<0>(GetParam());
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
Net net = build_net(params, backendId, targetId);
TEST_CYCLE()
{
Mat res = net.forward();
}
SANITY_CHECK_NOTHING();
}
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
PERF_TEST_P_(Conv_3x3S1D1, conv)
{
const ConvParam_t& params = get<0>(GetParam());
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
bool winograd = get<2>(GetParam());
Net net = build_net(params, backendId, targetId,
[=](Net& net)
{
net.enableWinograd(winograd);
}
);
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
TEST_CYCLE()
{
Mat res = net.forward();
}
SANITY_CHECK_NOTHING();
}
PERF_TEST_P_(Conv_Depthwise, conv)
{
const ConvParam_t& params = get<0>(GetParam());
Backend backendId = get<0>(get<1>(GetParam()));
Target targetId = get<1>(get<1>(GetParam()));
Net net = build_net(params, backendId, targetId, std::function<void(Net&)>(),
0/*flops_limit_debug_long*/, 0/*flops_limit_debug_verylong*/);
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
TEST_CYCLE()
{
Mat res = net.forward();
}
SANITY_CHECK_NOTHING();
}
ConvParamGenerator conv_params(testConvolution_Configs, sizeof(testConvolution_Configs) / sizeof(testConvolution_Configs[0]));
INSTANTIATE_TEST_CASE_P(/**/, Conv, Combine(
Merge pull request #24547 from WanliZhong:refactor_conv_perf_test Classify and extend convolution and depthwise performance tests #24547 This PR aims to: 1. Extend the test cases from models: `YOLOv5`, `YOLOv8`, `EfficientNet`, `YOLOX`, `YuNet`, `SFace`, `MPPalm`, `MPHand`, `MPPose`, `ViTTrack`, `PPOCRv3`, `CRNN`, `PPHumanSeg`. (371 new test cases are added) 2. Classify the existing convolution performance test to below cases - CONV_1x1 - CONV_3x3_S1_D1 (winograd) - CONV - DEPTHWISE 3. Reduce unnecessary test cases by follow 3 rules (366 test cases are pruned): (i). For all tests, except for pad and bias related parameters, all other parameters are the same. Only one case can be reserved. (ii). When the only difference is the channel of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 3], [4, 7], [8, 15], [16, 31], [32, 63], [64, 127], [128, 255], [256, 511], [512, 1023], [1024, 2047], [2048, 4095]` (iii). When the only difference is the width and height of input shape, and other parameters are the same. Only one case can be reserved in each range `[1, 31], [32, 63], [64, 95]... ` > **Reproduced**: 1. follow step in https://github.com/alalek/opencv/commit/dnn_dump_conv_kernels to dump all convolution cases from new models. (declared flops may not right, need to be checked manually) 2 and 3. Use the script from python code [classify conv.txt](https://github.com/opencv/opencv/files/13522228/classify.conv.txt) **Performance test result on Apple M2** **Test result details**: [M2.md](https://github.com/opencv/opencv/files/13379189/M2.md) **Additional test result details with FP16**: [m2_results_with_fp16.zip](https://github.com/opencv/opencv/files/13491070/m2_results_with_fp16.zip) **Brief summary for 4.8.1 vs 4.7.0 or 4.6.0**: 1. `CONV_1x1_S1_D1` dropped significant with small or large input shape. 2. `DEPTHWISE_5x5 ` dropped a little compared with 4.7.0. --- **Performance test result on [Intel Core i7-12700K](https://www.intel.com/content/www/us/en/products/sku/134594/intel-core-i712700k-processor-25m-cache-up-to-5-00-ghz/specifications.html)**: 8 Performance-cores (3.60 GHz, turbo up to 4.90 GHz), 4 Efficient-cores (2.70 GHz, turbo up to 3.80 GHz), 20 threads. **Test result details**: [INTEL.md](https://github.com/opencv/opencv/files/13374093/INTEL.md) **Brief summary for 4.8.1 vs 4.5.5**: 1. `CONV_5x5_S1_D1` dropped significant. 2. `CONV_1x1_S1_D1`, `CONV_3x3_S1_D1`, `DEPTHWISE_3x3_S1_D1`, `DEPTHWISW_3x3_S2_D1` dropped with small input shape. --- TODO: - [x] Perform tests on arm with each opencv version - [x] Perform tests on x86 with each opencv version - [x] Split each test classification with single test config - [x] test enable fp16
1 year ago
conv_params.all(),
dnnBackendsAndTargets(false, false) // defined in ../test/test_common.hpp
));
ConvParamGenerator conv_1x1_params(testConvolution_1x1_Configs, sizeof(testConvolution_1x1_Configs) / sizeof(testConvolution_1x1_Configs[0]));
INSTANTIATE_TEST_CASE_P(/**/, Conv_1x1, Combine(
conv_1x1_params.all(),
dnnBackendsAndTargets(false, false) // defined in ../test/test_common.hpp
));
ConvParamGenerator conv_3x3S1D1_params(testConvolution_3x3S1D1_Configs, sizeof(testConvolution_3x3S1D1_Configs) / sizeof(testConvolution_3x3S1D1_Configs[0]));
INSTANTIATE_TEST_CASE_P(/**/, Conv_3x3S1D1, Combine(
conv_3x3S1D1_params.all(),
dnnBackendsAndTargets(false, false), // defined in ../test/test_common.hpp
testing::Values(true, false) // enable Winograd or not
));
ConvParamGenerator conv_depthwise_params(testConvolution_Depthwise_Configs, sizeof(testConvolution_Depthwise_Configs) / sizeof(testConvolution_Depthwise_Configs[0]));
INSTANTIATE_TEST_CASE_P(/**/, Conv_Depthwise, Combine(
conv_depthwise_params.all(),
dnnBackendsAndTargets(false, false) // defined in ../test/test_common.hpp
));
} // namespace