mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
60 lines
1.7 KiB
60 lines
1.7 KiB
9 years ago
|
#!/usr/bin/env python
|
||
|
|
||
|
# Python 2/3 compatibility
|
||
|
from __future__ import print_function
|
||
|
import sys
|
||
|
PY3 = sys.version_info[0] == 3
|
||
|
|
||
|
if PY3:
|
||
|
xrange = range
|
||
|
|
||
|
import numpy as np
|
||
|
from numpy import random
|
||
|
import cv2
|
||
|
|
||
|
def make_gaussians(cluster_n, img_size):
|
||
|
points = []
|
||
|
ref_distrs = []
|
||
|
for i in xrange(cluster_n):
|
||
|
mean = (0.1 + 0.8*random.rand(2)) * img_size
|
||
|
a = (random.rand(2, 2)-0.5)*img_size*0.1
|
||
|
cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
|
||
|
n = 100 + random.randint(900)
|
||
|
pts = random.multivariate_normal(mean, cov, n)
|
||
|
points.append( pts )
|
||
|
ref_distrs.append( (mean, cov) )
|
||
|
points = np.float32( np.vstack(points) )
|
||
|
return points, ref_distrs
|
||
|
|
||
|
from tests_common import NewOpenCVTests
|
||
|
|
||
|
class gaussian_mix_test(NewOpenCVTests):
|
||
|
|
||
|
def test_gaussian_mix(self):
|
||
|
|
||
|
np.random.seed(10)
|
||
|
cluster_n = 5
|
||
|
img_size = 512
|
||
|
|
||
|
points, ref_distrs = make_gaussians(cluster_n, img_size)
|
||
|
|
||
|
em = cv2.ml.EM_create()
|
||
|
em.setClustersNumber(cluster_n)
|
||
|
em.setCovarianceMatrixType(cv2.ml.EM_COV_MAT_GENERIC)
|
||
|
em.trainEM(points)
|
||
|
means = em.getMeans()
|
||
|
covs = em.getCovs() # Known bug: https://github.com/Itseez/opencv/pull/4232
|
||
|
found_distrs = zip(means, covs)
|
||
|
|
||
|
matches_count = 0
|
||
|
|
||
|
meanEps = 0.05
|
||
|
covEps = 0.1
|
||
|
|
||
|
for i in range(cluster_n):
|
||
|
for j in range(cluster_n):
|
||
|
if (cv2.norm(means[i] - ref_distrs[j][0], cv2.NORM_L2) / cv2.norm(ref_distrs[j][0], cv2.NORM_L2) < meanEps and
|
||
|
cv2.norm(covs[i] - ref_distrs[j][1], cv2.NORM_L2) / cv2.norm(ref_distrs[j][1], cv2.NORM_L2) < covEps):
|
||
|
matches_count += 1
|
||
|
|
||
|
self.assertEqual(matches_count, cluster_n)
|