..[Lowe04] Lowe, D. G., “Distinctive Image Features from Scale-Invariant Keypoints”, International Journal of Computer Vision, 60, 2, pp. 91-110, 2004.
:param nOctaveLayers:The number of layers in each octave. 3 is the value used in D. Lowe paper. The number of octaves is computed automatically from the image resolution.
:param contrastThreshold:The contrast threshold used to filter out weak features in semi-uniform (low-contrast) regions. The larger the threshold, the less features are produced by the detector.
:param edgeThreshold:The threshold used to filter out edge-like features. Note that the its meaning is different from the contrastThreshold, i.e. the larger the ``edgeThreshold``, the less features are filtered out (more features are retained).
:param sigma:The sigma of the Gaussian applied to the input image at the octave #0. If your image is captured with a weak camera with soft lenses, you might want to reduce the number.
SIFT::operator ()
-----------------
Extract features and computes their descriptors using SIFT algorithm
:param mask:Optional input mask that marks the regions where we should detect features.
:param keypoints:The input/output vector of keypoints
:param descriptors:The output matrix of descriptors. Pass ``cv::noArray()`` if you do not need them.
:param useProvidedKeypoints:Boolean flag. If it is true, the keypoint detector is not run. Instead, the provided vector of keypoints is used and the algorithm just computes their descriptors.
Class for extracting Speeded Up Robust Features from an image [Bay06]_. The class is derived from ``CvSURFParams`` structure, which specifies the algorithm parameters:
* 0 means that detector computes orientation of each feature.
* 1 means that the orientation is not computed (which is much, much faster). For example, if you match images from a stereo pair, or do image stitching, the matched features likely have very similar angles, and you can speed up feature extraction by setting ``upright=1``.
Threshold for the keypoint detector. Only features, whose hessian is larger than ``hessianThreshold`` are retained by the detector. Therefore, the larger the value, the less keypoints you will get. A good default value could be from 300 to 500, depending from the image contrast.
The number of a gaussian pyramid octaves that the detector uses. It is set to 4 by default. If you want to get very large features, use the larger value. If you want just small features, decrease it.
:param useProvidedKeypoints:Boolean flag. If it is true, the keypoint detector is not run. Instead, the provided vector of keypoints is used and the algorithm just computes their descriptors.