Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

692 lines
24 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
#include "ie_ngraph.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#ifdef HAVE_DNN_NGRAPH
#include <ie_extension.h>
#include <ie_plugin_dispatcher.hpp>
#endif // HAVE_DNN_NGRAPH
#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>
namespace cv { namespace dnn {
#ifdef HAVE_DNN_NGRAPH
// For networks with input layer which has an empty name, IE generates a name id[some_number].
// OpenCV lets users use an empty input name and to prevent unexpected naming,
// we can use some predefined name.
static std::string kDefaultInpLayerName = "empty_inp_layer_name";
static std::vector<Ptr<NgraphBackendWrapper> >
ngraphWrappers(const std::vector<Ptr<BackendWrapper> >& ptrs)
{
std::vector<Ptr<NgraphBackendWrapper> > wrappers(ptrs.size());
for (int i = 0; i < ptrs.size(); ++i)
{
CV_Assert(!ptrs[i].empty());
wrappers[i] = ptrs[i].dynamicCast<NgraphBackendWrapper>();
CV_Assert(!wrappers[i].empty());
}
return wrappers;
}
InfEngineNgraphNode::InfEngineNgraphNode(std::shared_ptr<ngraph::Node>&& _node)
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH), node(std::move(_node)) {}
InfEngineNgraphNode::InfEngineNgraphNode(std::shared_ptr<ngraph::Node>& _node)
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH), node(_node) {}
void InfEngineNgraphNode::setName(const std::string& name) {
node->set_friendly_name(name);
}
InfEngineNgraphNet::InfEngineNgraphNet()
{
hasNetOwner = false;
device_name = "CPU";
}
InfEngineNgraphNet::InfEngineNgraphNet(InferenceEngine::CNNNetwork& net) : cnn(net)
{
hasNetOwner = true;
device_name = "CPU";
}
void InfEngineNgraphNet::addOutput(const std::string& name)
{
requestedOutputs.push_back(name);
}
void InfEngineNgraphNet::setNodePtr(std::shared_ptr<ngraph::Node>* ptr) {
all_nodes.emplace((*ptr)->get_friendly_name(), ptr);
}
void InfEngineNgraphNet::release() {
for (auto& node : components.back()) {
if (!(node->is_parameter() || node->is_output() || node->is_constant()) ) {
auto it = all_nodes.find(node->get_friendly_name());
if (it != all_nodes.end()) {
unconnectedNodes.erase(*(it->second));
it->second->reset();
all_nodes.erase(it);
}
}
}
}
void InfEngineNgraphNet::dfs(std::shared_ptr<ngraph::Node>& node,
std::vector<std::shared_ptr<ngraph::Node>>& comp,
std::unordered_map<std::string, bool>& used) {
used[node->get_friendly_name()] = true;
comp.push_back(node);
auto inputs = node->get_users();
for (size_t i = 0; i < node->get_input_size(); ++i) {
inputs.push_back(node->input_value(i).get_node()->shared_from_this());
}
for (auto& to : inputs) {
if (!used[to->get_friendly_name()]) {
dfs(to, comp, used);
}
}
}
int InfEngineNgraphNet::getNumComponents() {
if (!components.empty()) {
return components.size();
}
std::unordered_map<std::string, bool> used;
auto inputs = ngraph_function->get_ordered_ops();
for (auto& node : inputs) {
used.emplace(node->get_friendly_name(), false);
}
for (auto& node : inputs) {
if (!used[node->get_friendly_name()]) {
std::vector<std::shared_ptr<ngraph::Node>> current_comp;
dfs(node, current_comp, used);
components.push_back(current_comp);
}
}
return components.size();
}
void InfEngineNgraphNet::createNet(Target targetId) {
if (!hasNetOwner)
{
CV_Assert(!unconnectedNodes.empty());
ngraph::ResultVector outs;
for (auto& node : unconnectedNodes)
{
auto out = std::make_shared<ngraph::op::Result>(node);
outs.push_back(out);
}
CV_Assert_N(!inputs_vec.empty(), !outs.empty());
ngraph_function = std::make_shared<ngraph::Function>(outs, inputs_vec);
int num_comp = getNumComponents();
if (num_comp > 1) {
for (int i = num_comp - 1; i >= 0; --i) {
ngraph::ResultVector outputs;
ngraph::ParameterVector inps;
for (auto& node : components.back()) {
if (node->is_parameter()) {
auto parameter = std::dynamic_pointer_cast<ngraph::op::Parameter>(node);
inps.push_back(parameter);
}
else if (node->is_output()) {
auto result = std::dynamic_pointer_cast<ngraph::op::Result>(node);
outputs.push_back(result);
}
}
isInit = false;
CV_Assert_N(!inps.empty(), !outputs.empty());
ngraph_function = std::make_shared<ngraph::Function>(outputs, inps);
release();
components.pop_back();
init(targetId);
}
} else {
release();
components.clear();
init(targetId);
}
}
}
void InfEngineNgraphNet::init(Target targetId)
{
if (!hasNetOwner)
{
if (targetId == DNN_TARGET_OPENCL_FP16)
{
auto nodes = ngraph_function->get_ordered_ops();
for (auto& node : nodes)
{
auto parameter = std::dynamic_pointer_cast<ngraph::op::Parameter>(node);
if (parameter && parameter->get_element_type() == ngraph::element::f32)
{
parameter->set_element_type(ngraph::element::f16);
}
auto constant = std::dynamic_pointer_cast<ngraph::op::Constant>(node);
if (constant && constant->get_element_type() == ngraph::element::f32)
{
const float* floatsData = constant->get_data_ptr<float>();
size_t total = ngraph::shape_size(constant->get_shape());
Mat floats(1, total, CV_32F, (void*)floatsData);
Mat halfs;
cv::convertFp16(floats, halfs);
auto new_const = std::make_shared<ngraph::op::Constant>(ngraph::element::f16, constant->get_shape(), halfs.data);
new_const->set_friendly_name(constant->get_friendly_name());
ngraph::replace_node(constant, new_const);
}
}
ngraph_function->validate_nodes_and_infer_types();
}
cnn = InferenceEngine::CNNNetwork(ngraph_function);
#ifdef _DEBUG // TODO
//cnn.serialize("/tmp/cnn.xml", "/tmp/cnn.bin");
#endif
}
switch (targetId)
{
case DNN_TARGET_CPU:
device_name = "CPU";
break;
case DNN_TARGET_OPENCL:
case DNN_TARGET_OPENCL_FP16:
device_name = "GPU";
break;
case DNN_TARGET_MYRIAD:
device_name = "MYRIAD";
break;
case DNN_TARGET_FPGA:
device_name = "FPGA";
break;
default:
CV_Error(Error::StsNotImplemented, "Unknown target");
};
if (!hasNetOwner) {
for (size_t i = 0; i < ngraph_function->get_output_size(); ++i) {
auto node = ngraph_function->output(i).get_node();
for (size_t j = 0; j < node->get_input_size(); ++j) {
std::string name = node->input_value(j).get_node()->get_friendly_name();
auto iter = std::find(requestedOutputs.begin(), requestedOutputs.end(), name);
if (iter != requestedOutputs.end()) {
requestedOutputs.erase(iter);
cnn.addOutput(name);
}
}
}
} else {
for (const auto& name : requestedOutputs)
{
cnn.addOutput(name);
}
}
for (const auto& it : cnn.getInputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
CV_Assert(blobIt != allBlobs.end());
it.second->setPrecision(blobIt->second->getTensorDesc().getPrecision());
}
for (const auto& it : cnn.getOutputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
CV_Assert(blobIt != allBlobs.end());
it.second->setPrecision(blobIt->second->getTensorDesc().getPrecision()); // Should be always FP32
}
initPlugin(cnn);
}
ngraph::ParameterVector InfEngineNgraphNet::setInputs(const std::vector<cv::Mat>& inputs,
const std::vector<std::string>& names) {
CV_Assert_N(inputs.size() == names.size());
ngraph::ParameterVector current_inp;
for (size_t i = 0; i < inputs.size(); i++)
{
std::vector<size_t> shape = getShape<size_t>(inputs[i]);
auto inp = std::make_shared<ngraph::op::Parameter>(ngraph::element::f32, ngraph::Shape(shape));
inp->set_friendly_name(names[i]);
auto it = std::find_if(inputs_vec.begin(), inputs_vec.end(),
[&inp](const std::shared_ptr<ngraph::op::Parameter>& a) {
return a->get_friendly_name() == inp->get_friendly_name();
});
if (it == inputs_vec.end()) {
inputs_vec.push_back(inp);
current_inp.push_back(inp);
} else {
current_inp.push_back(*it);
}
}
return current_inp;
}
void InfEngineNgraphNet::setUnconnectedNodes(Ptr<InfEngineNgraphNode>& node) {
unconnectedNodes.insert(node->node);
}
void InfEngineNgraphNet::initPlugin(InferenceEngine::CNNNetwork& net)
{
CV_Assert(!isInitialized());
try
{
AutoLock lock(getInitializationMutex());
InferenceEngine::Core& ie = getCore();
{
isInit = true;
std::vector<std::string> candidates;
std::string param_pluginPath = utils::getConfigurationParameterString("OPENCV_DNN_IE_EXTRA_PLUGIN_PATH", "");
if (!param_pluginPath.empty())
{
candidates.push_back(param_pluginPath);
}
bool found = false;
for (size_t i = 0; i != candidates.size(); ++i)
{
const std::string& libName = candidates[i];
try
{
InferenceEngine::IExtensionPtr extension =
InferenceEngine::make_so_pointer<InferenceEngine::IExtension>(libName);
ie.AddExtension(extension, "CPU");
CV_LOG_INFO(NULL, "DNN-IE: Loaded extension plugin: " << libName);
found = true;
break;
}
catch(...) {}
}
if (!found && !candidates.empty())
{
CV_LOG_WARNING(NULL, "DNN-IE: Can't load extension plugin (extra layers for some networks). Specify path via OPENCV_DNN_IE_EXTRA_PLUGIN_PATH parameter");
}
// Some of networks can work without a library of extra layers.
// OpenCV fallbacks as extensions.
try
{
ie.AddExtension(std::make_shared<InfEngineExtension>(), "CPU");
}
catch(const std::exception& e)
{
CV_LOG_INFO(NULL, "DNN-IE: Can't register OpenCV custom layers extension: " << e.what());
}
#ifndef _WIN32
// Limit the number of CPU threads.
if (device_name == "CPU")
ie.SetConfig({{
InferenceEngine::PluginConfigParams::KEY_CPU_THREADS_NUM, format("%d", getNumThreads()),
}}, device_name);
#endif
}
std::map<std::string, std::string> config;
if (device_name == "MYRIAD") {
config.emplace("VPU_DETECT_NETWORK_BATCH", CONFIG_VALUE(NO));
}
netExec = ie.LoadNetwork(net, device_name, config);
}
catch (const std::exception& ex)
{
CV_Error(Error::StsError, format("Failed to initialize Inference Engine backend (device = %s): %s", device_name.c_str(), ex.what()));
}
}
bool InfEngineNgraphNet::isInitialized()
{
return isInit;
}
bool NgraphBackendLayer::getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
InferenceEngine::ICNNNetwork::InputShapes inShapes = t_net.getInputShapes();
InferenceEngine::ICNNNetwork::InputShapes::iterator itr;
bool equal_flag = true;
size_t i = 0;
for (itr = inShapes.begin(); itr != inShapes.end(); ++itr)
{
InferenceEngine::SizeVector currentInShape(inputs[i].begin(), inputs[i].end());
if (itr->second != currentInShape)
{
itr->second = currentInShape;
equal_flag = false;
}
i++;
}
if (!equal_flag)
{
InferenceEngine::CNNNetwork curr_t_net(t_net);
curr_t_net.reshape(inShapes);
}
std::vector<size_t> dims = t_net.getOutputsInfo()[name]->getDims();
outputs.push_back(MatShape(dims.begin(), dims.end()));
return false;
}
bool NgraphBackendLayer::supportBackend(int backendId)
{
CV_LOG_DEBUG(NULL, "NgraphBackendLayer::supportBackend(" << backendId << ")");
return backendId == DNN_BACKEND_DEFAULT ||
(backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH);
}
void NgraphBackendLayer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs,
OutputArrayOfArrays internals)
{
CV_Error(Error::StsInternal, "Choose Inference Engine as a preferable backend.");
}
static InferenceEngine::Layout estimateLayout(const Mat& m)
{
if (m.dims == 4)
return InferenceEngine::Layout::NCHW;
else if (m.dims == 2)
return InferenceEngine::Layout::NC;
else
return InferenceEngine::Layout::ANY;
}
static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std::string& name = "")
{
std::vector<size_t> shape = getShape<size_t>(m);
if (m.type() == CV_32F)
return InferenceEngine::DataPtr(new InferenceEngine::Data(name,
{InferenceEngine::Precision::FP32, shape, estimateLayout(m)}));
else if (m.type() == CV_8U)
return InferenceEngine::DataPtr(new InferenceEngine::Data(name,
{InferenceEngine::Precision::U8, shape, estimateLayout(m)}));
else
CV_Error(Error::StsNotImplemented, format("Unsupported data type %s", typeToString(m.type()).c_str()));
}
InferenceEngine::Blob::Ptr wrapToNgraphBlob(const Mat& m, const std::vector<size_t>& shape,
InferenceEngine::Layout layout)
{
if (m.type() == CV_32F)
return InferenceEngine::make_shared_blob<float>(
{InferenceEngine::Precision::FP32, shape, layout}, (float*)m.data);
else if (m.type() == CV_8U)
return InferenceEngine::make_shared_blob<uint8_t>(
{InferenceEngine::Precision::U8, shape, layout}, (uint8_t*)m.data);
else
CV_Error(Error::StsNotImplemented, format("Unsupported data type %s", typeToString(m.type()).c_str()));
}
InferenceEngine::Blob::Ptr wrapToNgraphBlob(const Mat& m, InferenceEngine::Layout layout)
{
std::vector<size_t> shape = getShape<size_t>(m);
return wrapToNgraphBlob(m, shape, layout);
}
NgraphBackendWrapper::NgraphBackendWrapper(int targetId, const cv::Mat& m)
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, targetId)
{
dataPtr = wrapToInfEngineDataNode(m);
blob = wrapToNgraphBlob(m, estimateLayout(m));
}
NgraphBackendWrapper::NgraphBackendWrapper(Ptr<BackendWrapper> wrapper)
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE_NGRAPH, wrapper->targetId)
{
Ptr<NgraphBackendWrapper> ieWrapper = wrapper.dynamicCast<NgraphBackendWrapper>();
CV_Assert(!ieWrapper.empty());
InferenceEngine::DataPtr srcData = ieWrapper->dataPtr;
dataPtr = InferenceEngine::DataPtr(new InferenceEngine::Data(srcData->getName(), srcData->getTensorDesc()));
blob = ieWrapper->blob;
}
Ptr<BackendWrapper> NgraphBackendWrapper::create(Ptr<BackendWrapper> wrapper)
{
return Ptr<BackendWrapper>(new NgraphBackendWrapper(wrapper));
}
NgraphBackendWrapper::~NgraphBackendWrapper()
{
// nothing
}
void NgraphBackendWrapper::copyToHost()
{
CV_LOG_DEBUG(NULL, "NgraphBackendWrapper::copyToHost()");
//CV_Error(Error::StsNotImplemented, "");
}
void NgraphBackendWrapper::setHostDirty()
{
CV_LOG_DEBUG(NULL, "NgraphBackendWrapper::setHostDirty()");
//CV_Error(Error::StsNotImplemented, "");
}
InferenceEngine::Blob::Ptr copyBlob(const InferenceEngine::Blob::Ptr& blob)
{
InferenceEngine::Blob::Ptr copy;
auto description = blob->getTensorDesc();
InferenceEngine::Precision precision = description.getPrecision();
if (precision == InferenceEngine::Precision::FP32)
{
copy = InferenceEngine::make_shared_blob<float>(description);
}
else if (precision == InferenceEngine::Precision::U8)
{
copy = InferenceEngine::make_shared_blob<uint8_t>(description);
}
else
CV_Error(Error::StsNotImplemented, "Unsupported blob precision");
copy->allocate();
return copy;
}
InferenceEngine::DataPtr ngraphDataNode(const Ptr<BackendWrapper>& ptr)
{
CV_Assert(!ptr.empty());
Ptr<NgraphBackendWrapper> p = ptr.dynamicCast<NgraphBackendWrapper>();
CV_Assert(!p.empty());
return p->dataPtr;
}
void forwardNgraph(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
Ptr<BackendNode>& node, bool isAsync)
{
CV_Assert(!node.empty());
Ptr<InfEngineNgraphNode> ieNode = node.dynamicCast<InfEngineNgraphNode>();
CV_Assert(!ieNode.empty());
ieNode->net->forward(outBlobsWrappers, isAsync);
}
void InfEngineNgraphNet::addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs)
{
auto wrappers = ngraphWrappers(ptrs);
for (const auto& wrapper : wrappers)
{
std::string name = wrapper->dataPtr->getName();
name = name.empty() ? kDefaultInpLayerName : name;
allBlobs.insert({name, wrapper->blob});
}
}
void InfEngineNgraphNet::NgraphReqWrapper::makePromises(const std::vector<Ptr<BackendWrapper> >& outsWrappers)
{
auto outs = ngraphWrappers(outsWrappers);
outProms.clear();
outProms.resize(outs.size());
outsNames.resize(outs.size());
for (int i = 0; i < outs.size(); ++i)
{
outs[i]->futureMat = outProms[i].getArrayResult();
outsNames[i] = outs[i]->dataPtr->getName();
}
}
Mat ngraphBlobToMat(const InferenceEngine::Blob::Ptr& blob)
{
std::vector<size_t> dims = blob->getTensorDesc().getDims();
std::vector<int> size(dims.begin(), dims.end());
auto precision = blob->getTensorDesc().getPrecision();
int type = -1;
switch (precision)
{
case InferenceEngine::Precision::FP32: type = CV_32F; break;
case InferenceEngine::Precision::U8: type = CV_8U; break;
default:
CV_Error(Error::StsNotImplemented, "Unsupported blob precision");
}
return Mat(size, type, (void*)blob->buffer());
}
void InfEngineNgraphNet::forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, bool isAsync)
{
CV_LOG_DEBUG(NULL, "InfEngineNgraphNet::forward(" << (isAsync ? "async" : "sync") << ")");
// Look for finished requests.
Ptr<NgraphReqWrapper> reqWrapper;
for (auto& wrapper : infRequests)
{
if (wrapper->isReady)
{
reqWrapper = wrapper;
break;
}
}
if (reqWrapper.empty())
{
reqWrapper = Ptr<NgraphReqWrapper>(new NgraphReqWrapper());
try
{
reqWrapper->req = netExec.CreateInferRequest();
}
catch (const std::exception& ex)
{
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
}
infRequests.push_back(reqWrapper);
InferenceEngine::BlobMap inpBlobs, outBlobs;
for (const auto& it : cnn.getInputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
CV_Assert(blobIt != allBlobs.end());
inpBlobs[name] = isAsync ? copyBlob(blobIt->second) : blobIt->second;
}
for (const auto& it : cnn.getOutputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
CV_Assert(blobIt != allBlobs.end());
outBlobs[name] = isAsync ? copyBlob(blobIt->second) : blobIt->second;
}
reqWrapper->req.SetInput(inpBlobs);
reqWrapper->req.SetOutput(outBlobs);
InferenceEngine::IInferRequest::Ptr infRequestPtr = reqWrapper->req;
infRequestPtr->SetUserData(reqWrapper.get(), 0);
infRequestPtr->SetCompletionCallback(
[](InferenceEngine::IInferRequest::Ptr request, InferenceEngine::StatusCode status)
{
CV_LOG_DEBUG(NULL, "DNN(nGraph): completionCallback(" << (int)status << ")");
NgraphReqWrapper* wrapper;
request->GetUserData((void**)&wrapper, 0);
CV_Assert(wrapper && "Internal error");
size_t processedOutputs = 0;
try
{
for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs)
{
const std::string& name = wrapper->outsNames[processedOutputs];
Mat m = ngraphBlobToMat(wrapper->req.GetBlob(name));
try
{
CV_Assert(status == InferenceEngine::StatusCode::OK);
wrapper->outProms[processedOutputs].setValue(m.clone());
}
catch (...)
{
try {
wrapper->outProms[processedOutputs].setException(std::current_exception());
} catch(...) {
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
}
}
}
}
catch (...)
{
std::exception_ptr e = std::current_exception();
for (; processedOutputs < wrapper->outProms.size(); ++processedOutputs)
{
try {
wrapper->outProms[processedOutputs].setException(e);
} catch(...) {
CV_LOG_ERROR(NULL, "DNN: Exception occurred during async inference exception propagation");
}
}
}
wrapper->isReady = true;
}
);
}
if (isAsync)
{
// Copy actual data to infer request's input blobs.
for (const auto& it : cnn.getInputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
Mat srcMat = ngraphBlobToMat(blobIt->second);
Mat dstMat = ngraphBlobToMat(reqWrapper->req.GetBlob(name));
srcMat.copyTo(dstMat);
}
// Set promises to output blobs wrappers.
reqWrapper->makePromises(outBlobsWrappers);
reqWrapper->isReady = false;
reqWrapper->req.StartAsync();
}
else
{
reqWrapper->req.Infer();
}
}
#else
void forwardNgraph(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
Ptr<BackendNode>& node, bool isAsync)
{
CV_Assert(false && "nGraph is not enabled in this OpenCV build");
}
#endif
}}