Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1870 lines
62 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <float.h>
#include <stdio.h>
namespace cv
{
void calcOpticalFlowPyrLK( const Mat& prevImg, const Mat& nextImg,
const vector<Point2f>& prevPts,
vector<Point2f>& nextPts,
vector<uchar>& status, vector<float>& err,
Size winSize, int maxLevel,
TermCriteria criteria,
double derivLambda,
int flags )
{
derivLambda = std::min(std::max(derivLambda, 0.), 1.);
double lambda1 = 1. - derivLambda, lambda2 = derivLambda;
const int derivKernelSize = 3;
const float deriv1Scale = 0.5f/4.f;
const float deriv2Scale = 0.25f/4.f;
const int derivDepth = CV_32F;
Point2f halfWin((winSize.width-1)*0.5f, (winSize.height-1)*0.5f);
CV_Assert( maxLevel >= 0 && winSize.width > 2 && winSize.height > 2 );
CV_Assert( prevImg.size() == nextImg.size() &&
prevImg.type() == nextImg.type() );
size_t npoints = prevPts.size();
nextPts.resize(npoints);
status.resize(npoints);
for( size_t i = 0; i < npoints; i++ )
status[i] = true;
err.resize(npoints);
if( npoints == 0 )
return;
vector<Mat> prevPyr, nextPyr;
int cn = prevImg.channels();
buildPyramid( prevImg, prevPyr, maxLevel );
buildPyramid( nextImg, nextPyr, maxLevel );
// I, dI/dx ~ Ix, dI/dy ~ Iy, d2I/dx2 ~ Ixx, d2I/dxdy ~ Ixy, d2I/dy2 ~ Iyy
Mat derivIBuf((prevImg.rows + winSize.height*2),
(prevImg.cols + winSize.width*2),
CV_MAKETYPE(derivDepth, cn*6));
// J, dJ/dx ~ Jx, dJ/dy ~ Jy
Mat derivJBuf((prevImg.rows + winSize.height*2),
(prevImg.cols + winSize.width*2),
CV_MAKETYPE(derivDepth, cn*3));
Mat tempDerivBuf(prevImg.size(), CV_MAKETYPE(derivIBuf.type(), cn));
Mat derivIWinBuf(winSize, derivIBuf.type());
if( (criteria.type & TermCriteria::COUNT) == 0 )
criteria.maxCount = 30;
else
criteria.maxCount = std::min(std::max(criteria.maxCount, 0), 100);
if( (criteria.type & TermCriteria::EPS) == 0 )
criteria.epsilon = 0.01;
else
criteria.epsilon = std::min(std::max(criteria.epsilon, 0.), 10.);
criteria.epsilon *= criteria.epsilon;
for( int level = maxLevel; level >= 0; level-- )
{
int k;
Size imgSize = prevPyr[level].size();
Mat tempDeriv( imgSize, tempDerivBuf.type(), tempDerivBuf.data );
Mat _derivI( imgSize.height + winSize.height*2,
imgSize.width + winSize.width*2,
derivIBuf.type(), derivIBuf.data );
Mat _derivJ( imgSize.height + winSize.height*2,
imgSize.width + winSize.width*2,
derivJBuf.type(), derivJBuf.data );
Mat derivI(_derivI, Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
Mat derivJ(_derivJ, Rect(winSize.width, winSize.height, imgSize.width, imgSize.height));
CvMat cvderivI = _derivI;
cvZero(&cvderivI);
CvMat cvderivJ = _derivJ;
cvZero(&cvderivJ);
vector<int> fromTo(cn*2);
for( k = 0; k < cn; k++ )
fromTo[k*2] = k;
prevPyr[level].convertTo(tempDeriv, derivDepth);
for( k = 0; k < cn; k++ )
fromTo[k*2+1] = k*6;
mixChannels(&tempDeriv, 1, &derivI, 1, &fromTo[0], cn);
// compute spatial derivatives and merge them together
Sobel(prevPyr[level], tempDeriv, derivDepth, 1, 0, derivKernelSize, deriv1Scale );
for( k = 0; k < cn; k++ )
fromTo[k*2+1] = k*6 + 1;
mixChannels(&tempDeriv, 1, &derivI, 1, &fromTo[0], cn);
Sobel(prevPyr[level], tempDeriv, derivDepth, 0, 1, derivKernelSize, deriv1Scale );
for( k = 0; k < cn; k++ )
fromTo[k*2+1] = k*6 + 2;
mixChannels(&tempDeriv, 1, &derivI, 1, &fromTo[0], cn);
Sobel(prevPyr[level], tempDeriv, derivDepth, 2, 0, derivKernelSize, deriv2Scale );
for( k = 0; k < cn; k++ )
fromTo[k*2+1] = k*6 + 3;
mixChannels(&tempDeriv, 1, &derivI, 1, &fromTo[0], cn);
Sobel(prevPyr[level], tempDeriv, derivDepth, 1, 1, derivKernelSize, deriv2Scale );
for( k = 0; k < cn; k++ )
fromTo[k*2+1] = k*6 + 4;
mixChannels(&tempDeriv, 1, &derivI, 1, &fromTo[0], cn);
Sobel(prevPyr[level], tempDeriv, derivDepth, 0, 2, derivKernelSize, deriv2Scale );
for( k = 0; k < cn; k++ )
fromTo[k*2+1] = k*6 + 5;
mixChannels(&tempDeriv, 1, &derivI, 1, &fromTo[0], cn);
nextPyr[level].convertTo(tempDeriv, derivDepth);
for( k = 0; k < cn; k++ )
fromTo[k*2+1] = k*3;
mixChannels(&tempDeriv, 1, &derivJ, 1, &fromTo[0], cn);
Sobel(nextPyr[level], tempDeriv, derivDepth, 1, 0, derivKernelSize, deriv1Scale );
for( k = 0; k < cn; k++ )
fromTo[k*2+1] = k*3 + 1;
mixChannels(&tempDeriv, 1, &derivJ, 1, &fromTo[0], cn);
Sobel(nextPyr[level], tempDeriv, derivDepth, 0, 1, derivKernelSize, deriv1Scale );
for( k = 0; k < cn; k++ )
fromTo[k*2+1] = k*3 + 2;
mixChannels(&tempDeriv, 1, &derivJ, 1, &fromTo[0], cn);
/*copyMakeBorder( derivI, _derivI, winSize.height, winSize.height,
winSize.width, winSize.width, BORDER_CONSTANT );
copyMakeBorder( derivJ, _derivJ, winSize.height, winSize.height,
winSize.width, winSize.width, BORDER_CONSTANT );*/
for( size_t ptidx = 0; ptidx < npoints; ptidx++ )
{
Point2f prevPt = prevPts[ptidx]*(float)(1./(1 << level));
Point2f nextPt;
if( level == maxLevel )
{
if( flags & OPTFLOW_USE_INITIAL_FLOW )
nextPt = nextPts[ptidx]*(float)(1./(1 << level));
else
nextPt = prevPt;
}
else
nextPt = nextPts[ptidx]*2.f;
nextPts[ptidx] = nextPt;
Point2i iprevPt, inextPt;
prevPt -= halfWin;
iprevPt.x = cvFloor(prevPt.x);
iprevPt.y = cvFloor(prevPt.y);
if( iprevPt.x < -winSize.width || iprevPt.x >= derivI.cols ||
iprevPt.y < -winSize.height || iprevPt.y >= derivI.rows )
{
if( level == 0 )
{
status[ptidx] = false;
err[ptidx] = FLT_MAX;
}
continue;
}
float a = prevPt.x - iprevPt.x;
float b = prevPt.y - iprevPt.y;
float w00 = (1.f - a)*(1.f - b), w01 = a*(1.f - b);
float w10 = (1.f - a)*b, w11 = a*b;
size_t stepI = derivI.step/derivI.elemSize1();
size_t stepJ = derivJ.step/derivJ.elemSize1();
int cnI = cn*6, cnJ = cn*3;
double A11 = 0, A12 = 0, A22 = 0;
double iA11 = 0, iA12 = 0, iA22 = 0;
// extract the patch from the first image
int x, y;
for( y = 0; y < winSize.height; y++ )
{
const float* src = (const float*)(derivI.data +
(y + iprevPt.y)*derivI.step) + iprevPt.x*cnI;
float* dst = (float*)(derivIWinBuf.data + y*derivIWinBuf.step);
for( x = 0; x < winSize.width*cnI; x += cnI, src += cnI )
{
float I = src[0]*w00 + src[cnI]*w01 + src[stepI]*w10 + src[stepI+cnI]*w11;
dst[x] = I;
float Ix = src[1]*w00 + src[cnI+1]*w01 + src[stepI+1]*w10 + src[stepI+cnI+1]*w11;
float Iy = src[2]*w00 + src[cnI+2]*w01 + src[stepI+2]*w10 + src[stepI+cnI+2]*w11;
dst[x+1] = Ix; dst[x+2] = Iy;
float Ixx = src[3]*w00 + src[cnI+3]*w01 + src[stepI+3]*w10 + src[stepI+cnI+3]*w11;
float Ixy = src[4]*w00 + src[cnI+4]*w01 + src[stepI+4]*w10 + src[stepI+cnI+4]*w11;
float Iyy = src[5]*w00 + src[cnI+5]*w01 + src[stepI+5]*w10 + src[stepI+cnI+5]*w11;
dst[x+3] = Ixx; dst[x+4] = Ixy; dst[x+5] = Iyy;
iA11 += (double)Ix*Ix;
iA12 += (double)Ix*Iy;
iA22 += (double)Iy*Iy;
A11 += (double)Ixx*Ixx + (double)Ixy*Ixy;
A12 += Ixy*((double)Ixx + Iyy);
A22 += (double)Ixy*Ixy + (double)Iyy*Iyy;
}
}
A11 = lambda1*iA11 + lambda2*A11;
A12 = lambda1*iA12 + lambda2*A12;
A22 = lambda1*iA22 + lambda2*A22;
double D = A11*A22 - A12*A12;
double minEig = (A22 + A11 - std::sqrt((A11-A22)*(A11-A22) +
4.*A12*A12))/(2*winSize.width*winSize.height);
err[ptidx] = (float)minEig;
if( D < DBL_EPSILON )
{
if( level == 0 )
status[ptidx] = false;
continue;
}
D = 1./D;
nextPt -= halfWin;
Point2f prevDelta;
for( int j = 0; j < criteria.maxCount; j++ )
{
inextPt.x = cvFloor(nextPt.x);
inextPt.y = cvFloor(nextPt.y);
if( inextPt.x < -winSize.width || inextPt.x >= derivJ.cols ||
inextPt.y < -winSize.height || inextPt.y >= derivJ.rows )
{
if( level == 0 )
status[ptidx] = false;
break;
}
a = nextPt.x - inextPt.x;
b = nextPt.y - inextPt.y;
w00 = (1.f - a)*(1.f - b); w01 = a*(1.f - b);
w10 = (1.f - a)*b; w11 = a*b;
double b1 = 0, b2 = 0, ib1 = 0, ib2 = 0;
for( y = 0; y < winSize.height; y++ )
{
const float* src = (const float*)(derivJ.data +
(y + inextPt.y)*derivJ.step) + inextPt.x*cnJ;
const float* Ibuf = (float*)(derivIWinBuf.data + y*derivIWinBuf.step);
for( x = 0; x < winSize.width; x++, src += cnJ, Ibuf += cnI )
{
double It = src[0]*w00 + src[cnJ]*w01 + src[stepJ]*w10 +
src[stepJ+cnJ]*w11 - Ibuf[0];
double Ixt = src[1]*w00 + src[cnJ+1]*w01 + src[stepJ+1]*w10 +
src[stepJ+cnJ+1]*w11 - Ibuf[1];
double Iyt = src[2]*w00 + src[cnJ+2]*w01 + src[stepJ+2]*w10 +
src[stepJ+cnJ+2]*w11 - Ibuf[2];
b1 += Ixt*Ibuf[3] + Iyt*Ibuf[4];
b2 += Ixt*Ibuf[4] + Iyt*Ibuf[5];
ib1 += It*Ibuf[1];
ib2 += It*Ibuf[2];
}
}
b1 = lambda1*ib1 + lambda2*b1;
b2 = lambda1*ib2 + lambda2*b2;
Point2f delta( (float)((A12*b2 - A22*b1) * D),
(float)((A12*b1 - A11*b2) * D));
//delta = -delta;
nextPt += delta;
nextPts[ptidx] = nextPt + halfWin;
if( delta.ddot(delta) <= criteria.epsilon )
break;
if( j > 0 && std::abs(delta.x + prevDelta.x) < 0.01 &&
std::abs(delta.y + prevDelta.y) < 0.01 )
{
nextPts[ptidx] -= delta*0.5f;
break;
}
prevDelta = delta;
}
}
}
}
}
static void
intersect( CvPoint2D32f pt, CvSize win_size, CvSize imgSize,
CvPoint* min_pt, CvPoint* max_pt )
{
CvPoint ipt;
ipt.x = cvFloor( pt.x );
ipt.y = cvFloor( pt.y );
ipt.x -= win_size.width;
ipt.y -= win_size.height;
win_size.width = win_size.width * 2 + 1;
win_size.height = win_size.height * 2 + 1;
min_pt->x = MAX( 0, -ipt.x );
min_pt->y = MAX( 0, -ipt.y );
max_pt->x = MIN( win_size.width, imgSize.width - ipt.x );
max_pt->y = MIN( win_size.height, imgSize.height - ipt.y );
}
static int icvMinimalPyramidSize( CvSize imgSize )
{
return cvAlign(imgSize.width,8) * imgSize.height / 3;
}
static void
icvInitPyramidalAlgorithm( const CvMat* imgA, const CvMat* imgB,
CvMat* pyrA, CvMat* pyrB,
int level, CvTermCriteria * criteria,
int max_iters, int flags,
uchar *** imgI, uchar *** imgJ,
int **step, CvSize** size,
double **scale, cv::AutoBuffer<uchar>* buffer )
{
const int ALIGN = 8;
int pyrBytes, bufferBytes = 0, elem_size;
int level1 = level + 1;
int i;
CvSize imgSize, levelSize;
*imgI = *imgJ = 0;
*step = 0;
*scale = 0;
*size = 0;
/* check input arguments */
if( ((flags & CV_LKFLOW_PYR_A_READY) != 0 && !pyrA) ||
((flags & CV_LKFLOW_PYR_B_READY) != 0 && !pyrB) )
CV_Error( CV_StsNullPtr, "Some of the precomputed pyramids are missing" );
if( level < 0 )
CV_Error( CV_StsOutOfRange, "The number of pyramid levels is negative" );
switch( criteria->type )
{
case CV_TERMCRIT_ITER:
criteria->epsilon = 0.f;
break;
case CV_TERMCRIT_EPS:
criteria->max_iter = max_iters;
break;
case CV_TERMCRIT_ITER | CV_TERMCRIT_EPS:
break;
default:
assert( 0 );
CV_Error( CV_StsBadArg, "Invalid termination criteria" );
}
/* compare squared values */
criteria->epsilon *= criteria->epsilon;
/* set pointers and step for every level */
pyrBytes = 0;
imgSize = cvGetSize(imgA);
elem_size = CV_ELEM_SIZE(imgA->type);
levelSize = imgSize;
for( i = 1; i < level1; i++ )
{
levelSize.width = (levelSize.width + 1) >> 1;
levelSize.height = (levelSize.height + 1) >> 1;
int tstep = cvAlign(levelSize.width,ALIGN) * elem_size;
pyrBytes += tstep * levelSize.height;
}
assert( pyrBytes <= imgSize.width * imgSize.height * elem_size * 4 / 3 );
/* buffer_size = <size for patches> + <size for pyramids> */
bufferBytes = (int)((level1 >= 0) * ((pyrA->data.ptr == 0) +
(pyrB->data.ptr == 0)) * pyrBytes +
(sizeof(imgI[0][0]) * 2 + sizeof(step[0][0]) +
sizeof(size[0][0]) + sizeof(scale[0][0])) * level1);
buffer->allocate( bufferBytes );
*imgI = (uchar **) (uchar*)(*buffer);
*imgJ = *imgI + level1;
*step = (int *) (*imgJ + level1);
*scale = (double *) (*step + level1);
*size = (CvSize *)(*scale + level1);
imgI[0][0] = imgA->data.ptr;
imgJ[0][0] = imgB->data.ptr;
step[0][0] = imgA->step;
scale[0][0] = 1;
size[0][0] = imgSize;
if( level > 0 )
{
uchar *bufPtr = (uchar *) (*size + level1);
uchar *ptrA = pyrA->data.ptr;
uchar *ptrB = pyrB->data.ptr;
if( !ptrA )
{
ptrA = bufPtr;
bufPtr += pyrBytes;
}
if( !ptrB )
ptrB = bufPtr;
levelSize = imgSize;
/* build pyramids for both frames */
for( i = 1; i <= level; i++ )
{
int levelBytes;
CvMat prev_level, next_level;
levelSize.width = (levelSize.width + 1) >> 1;
levelSize.height = (levelSize.height + 1) >> 1;
size[0][i] = levelSize;
step[0][i] = cvAlign( levelSize.width, ALIGN ) * elem_size;
scale[0][i] = scale[0][i - 1] * 0.5;
levelBytes = step[0][i] * levelSize.height;
imgI[0][i] = (uchar *) ptrA;
ptrA += levelBytes;
if( !(flags & CV_LKFLOW_PYR_A_READY) )
{
prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 );
next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 );
cvSetData( &prev_level, imgI[0][i-1], step[0][i-1] );
cvSetData( &next_level, imgI[0][i], step[0][i] );
cvPyrDown( &prev_level, &next_level );
}
imgJ[0][i] = (uchar *) ptrB;
ptrB += levelBytes;
if( !(flags & CV_LKFLOW_PYR_B_READY) )
{
prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 );
next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 );
cvSetData( &prev_level, imgJ[0][i-1], step[0][i-1] );
cvSetData( &next_level, imgJ[0][i], step[0][i] );
cvPyrDown( &prev_level, &next_level );
}
}
}
}
/* compute dI/dx and dI/dy */
static void
icvCalcIxIy_32f( const float* src, int src_step, float* dstX, float* dstY, int dst_step,
CvSize src_size, const float* smooth_k, float* buffer0 )
{
int src_width = src_size.width, dst_width = src_size.width-2;
int x, height = src_size.height - 2;
float* buffer1 = buffer0 + src_width;
src_step /= sizeof(src[0]);
dst_step /= sizeof(dstX[0]);
for( ; height--; src += src_step, dstX += dst_step, dstY += dst_step )
{
const float* src2 = src + src_step;
const float* src3 = src + src_step*2;
for( x = 0; x < src_width; x++ )
{
float t0 = (src3[x] + src[x])*smooth_k[0] + src2[x]*smooth_k[1];
float t1 = src3[x] - src[x];
buffer0[x] = t0; buffer1[x] = t1;
}
for( x = 0; x < dst_width; x++ )
{
float t0 = buffer0[x+2] - buffer0[x];
float t1 = (buffer1[x] + buffer1[x+2])*smooth_k[0] + buffer1[x+1]*smooth_k[1];
dstX[x] = t0; dstY[x] = t1;
}
}
}
#undef CV_8TO32F
#define CV_8TO32F(a) (a)
static const void*
icvAdjustRect( const void* srcptr, int src_step, int pix_size,
CvSize src_size, CvSize win_size,
CvPoint ip, CvRect* pRect )
{
CvRect rect;
const char* src = (const char*)srcptr;
if( ip.x >= 0 )
{
src += ip.x*pix_size;
rect.x = 0;
}
else
{
rect.x = -ip.x;
if( rect.x > win_size.width )
rect.x = win_size.width;
}
if( ip.x + win_size.width < src_size.width )
rect.width = win_size.width;
else
{
rect.width = src_size.width - ip.x - 1;
if( rect.width < 0 )
{
src += rect.width*pix_size;
rect.width = 0;
}
assert( rect.width <= win_size.width );
}
if( ip.y >= 0 )
{
src += ip.y * src_step;
rect.y = 0;
}
else
rect.y = -ip.y;
if( ip.y + win_size.height < src_size.height )
rect.height = win_size.height;
else
{
rect.height = src_size.height - ip.y - 1;
if( rect.height < 0 )
{
src += rect.height*src_step;
rect.height = 0;
}
}
*pRect = rect;
return src - rect.x*pix_size;
}
static CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R
( const uchar* src, int src_step, CvSize src_size,
float* dst, int dst_step, CvSize win_size, CvPoint2D32f center )
{
CvPoint ip;
float a12, a22, b1, b2;
float a, b;
double s = 0;
int i, j;
center.x -= (win_size.width-1)*0.5f;
center.y -= (win_size.height-1)*0.5f;
ip.x = cvFloor( center.x );
ip.y = cvFloor( center.y );
if( win_size.width <= 0 || win_size.height <= 0 )
return CV_BADRANGE_ERR;
a = center.x - ip.x;
b = center.y - ip.y;
a = MAX(a,0.0001f);
a12 = a*(1.f-b);
a22 = a*b;
b1 = 1.f - b;
b2 = b;
s = (1. - a)/a;
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
if( 0 <= ip.x && ip.x + win_size.width < src_size.width &&
0 <= ip.y && ip.y + win_size.height < src_size.height )
{
// extracted rectangle is totally inside the image
src += ip.y * src_step + ip.x;
#if 0
if( icvCopySubpix_8u32f_C1R_p &&
icvCopySubpix_8u32f_C1R_p( src, src_step, dst,
dst_step*sizeof(dst[0]), win_size, a, b ) >= 0 )
return CV_OK;
#endif
for( ; win_size.height--; src += src_step, dst += dst_step )
{
float prev = (1 - a)*(b1*CV_8TO32F(src[0]) + b2*CV_8TO32F(src[src_step]));
for( j = 0; j < win_size.width; j++ )
{
float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src[j+1+src_step]);
dst[j] = prev + t;
prev = (float)(t*s);
}
}
}
else
{
CvRect r;
src = (const uchar*)icvAdjustRect( src, src_step*sizeof(*src),
sizeof(*src), src_size, win_size,ip, &r);
for( i = 0; i < win_size.height; i++, dst += dst_step )
{
const uchar *src2 = src + src_step;
if( i < r.y || i >= r.height )
src2 -= src_step;
for( j = 0; j < r.x; j++ )
{
float s0 = CV_8TO32F(src[r.x])*b1 +
CV_8TO32F(src2[r.x])*b2;
dst[j] = (float)(s0);
}
if( j < r.width )
{
float prev = (1 - a)*(b1*CV_8TO32F(src[j]) + b2*CV_8TO32F(src2[j]));
for( ; j < r.width; j++ )
{
float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src2[j+1]);
dst[j] = prev + t;
prev = (float)(t*s);
}
}
for( ; j < win_size.width; j++ )
{
float s0 = CV_8TO32F(src[r.width])*b1 +
CV_8TO32F(src2[r.width])*b2;
dst[j] = (float)(s0);
}
if( i < r.height )
src = src2;
}
}
return CV_OK;
}
#define ICV_32F8U(x) ((uchar)cvRound(x))
#define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( flavor, srctype, dsttype, \
worktype, cast_macro, cvt ) \
static CvStatus CV_STDCALL \
icvGetQuadrangleSubPix_##flavor##_C1R \
( const srctype * src, int src_step, CvSize src_size, \
dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \
{ \
int x, y; \
double dx = (win_size.width - 1)*0.5; \
double dy = (win_size.height - 1)*0.5; \
double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \
double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \
\
src_step /= sizeof(srctype); \
dst_step /= sizeof(dsttype); \
\
for( y = 0; y < win_size.height; y++, dst += dst_step ) \
{ \
double xs = A12*y + A13; \
double ys = A22*y + A23; \
double xe = A11*(win_size.width-1) + A12*y + A13; \
double ye = A21*(win_size.width-1) + A22*y + A23; \
\
if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \
(unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \
(unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \
(unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \
{ \
for( x = 0; x < win_size.width; x++ ) \
{ \
int ixs = cvFloor( xs ); \
int iys = cvFloor( ys ); \
const srctype *ptr = src + src_step*iys + ixs; \
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
worktype p0 = cvt(ptr[0])*a1 + cvt(ptr[1])*a; \
worktype p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+1])*a;\
xs += A11; \
ys += A21; \
\
dst[x] = cast_macro(p0 + b * (p1 - p0)); \
} \
} \
else \
{ \
for( x = 0; x < win_size.width; x++ ) \
{ \
int ixs = cvFloor( xs ), iys = cvFloor( ys ); \
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
const srctype *ptr0, *ptr1; \
worktype p0, p1; \
xs += A11; ys += A21; \
\
if( (unsigned)iys < (unsigned)(src_size.height-1) ) \
ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \
else \
ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \
\
if( (unsigned)ixs < (unsigned)(src_size.width-1) ) \
{ \
p0 = cvt(ptr0[ixs])*a1 + cvt(ptr0[ixs+1])*a; \
p1 = cvt(ptr1[ixs])*a1 + cvt(ptr1[ixs+1])*a; \
} \
else \
{ \
ixs = ixs < 0 ? 0 : src_size.width - 1; \
p0 = cvt(ptr0[ixs]); p1 = cvt(ptr1[ixs]); \
} \
dst[x] = cast_macro(p0 + b * (p1 - p0)); \
} \
} \
} \
\
return CV_OK; \
}
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F )
namespace cv
{
struct LKTrackerInvoker
{
LKTrackerInvoker( const CvMat* _imgI, const CvMat* _imgJ,
const CvPoint2D32f* _featuresA,
CvPoint2D32f* _featuresB,
char* _status, float* _error,
CvTermCriteria _criteria,
CvSize _winSize, int _level, int _flags )
{
imgI = _imgI;
imgJ = _imgJ;
featuresA = _featuresA;
featuresB = _featuresB;
status = _status;
error = _error;
criteria = _criteria;
winSize = _winSize;
level = _level;
flags = _flags;
}
void operator()(const BlockedRange& range) const
{
static const float smoothKernel[] = { 0.09375, 0.3125, 0.09375 }; // 3/32, 10/32, 3/32
int i, i1 = range.begin(), i2 = range.end();
CvSize patchSize = cvSize( winSize.width * 2 + 1, winSize.height * 2 + 1 );
int patchLen = patchSize.width * patchSize.height;
int srcPatchLen = (patchSize.width + 2)*(patchSize.height + 2);
AutoBuffer<float> buf(patchLen*3 + srcPatchLen);
float* patchI = buf;
float* patchJ = patchI + srcPatchLen;
float* Ix = patchJ + patchLen;
float* Iy = Ix + patchLen;
float scaleL = 1.f/(1 << level);
CvSize levelSize = cvGetMatSize(imgI);
// find flow for each given point
for( i = i1; i < i2; i++ )
{
CvPoint2D32f v;
CvPoint minI, maxI, minJ, maxJ;
CvSize isz, jsz;
int pt_status;
CvPoint2D32f u;
CvPoint prev_minJ = { -1, -1 }, prev_maxJ = { -1, -1 };
double Gxx = 0, Gxy = 0, Gyy = 0, D = 0, minEig = 0;
float prev_mx = 0, prev_my = 0;
int j, x, y;
v.x = featuresB[i].x*2;
v.y = featuresB[i].y*2;
pt_status = status[i];
if( !pt_status )
continue;
minI = maxI = minJ = maxJ = cvPoint(0, 0);
u.x = featuresA[i].x * scaleL;
u.y = featuresA[i].y * scaleL;
intersect( u, winSize, levelSize, &minI, &maxI );
isz = jsz = cvSize(maxI.x - minI.x + 2, maxI.y - minI.y + 2);
u.x += (minI.x - (patchSize.width - maxI.x + 1))*0.5f;
u.y += (minI.y - (patchSize.height - maxI.y + 1))*0.5f;
if( isz.width < 3 || isz.height < 3 ||
icvGetRectSubPix_8u32f_C1R( imgI->data.ptr, imgI->step, levelSize,
patchI, isz.width*sizeof(patchI[0]), isz, u ) < 0 )
{
// point is outside the first image. take the next
status[i] = 0;
continue;
}
icvCalcIxIy_32f( patchI, isz.width*sizeof(patchI[0]), Ix, Iy,
(isz.width-2)*sizeof(patchI[0]), isz, smoothKernel, patchJ );
for( j = 0; j < criteria.max_iter; j++ )
{
double bx = 0, by = 0;
float mx, my;
CvPoint2D32f _v;
intersect( v, winSize, levelSize, &minJ, &maxJ );
minJ.x = MAX( minJ.x, minI.x );
minJ.y = MAX( minJ.y, minI.y );
maxJ.x = MIN( maxJ.x, maxI.x );
maxJ.y = MIN( maxJ.y, maxI.y );
jsz = cvSize(maxJ.x - minJ.x, maxJ.y - minJ.y);
_v.x = v.x + (minJ.x - (patchSize.width - maxJ.x + 1))*0.5f;
_v.y = v.y + (minJ.y - (patchSize.height - maxJ.y + 1))*0.5f;
if( jsz.width < 1 || jsz.height < 1 ||
icvGetRectSubPix_8u32f_C1R( imgJ->data.ptr, imgJ->step, levelSize, patchJ,
jsz.width*sizeof(patchJ[0]), jsz, _v ) < 0 )
{
// point is outside of the second image. take the next
pt_status = 0;
break;
}
if( maxJ.x == prev_maxJ.x && maxJ.y == prev_maxJ.y &&
minJ.x == prev_minJ.x && minJ.y == prev_minJ.y )
{
for( y = 0; y < jsz.height; y++ )
{
const float* pi = patchI +
(y + minJ.y - minI.y + 1)*isz.width + minJ.x - minI.x + 1;
const float* pj = patchJ + y*jsz.width;
const float* ix = Ix +
(y + minJ.y - minI.y)*(isz.width-2) + minJ.x - minI.x;
const float* iy = Iy + (ix - Ix);
for( x = 0; x < jsz.width; x++ )
{
double t0 = pi[x] - pj[x];
bx += t0 * ix[x];
by += t0 * iy[x];
}
}
}
else
{
Gxx = Gyy = Gxy = 0;
for( y = 0; y < jsz.height; y++ )
{
const float* pi = patchI +
(y + minJ.y - minI.y + 1)*isz.width + minJ.x - minI.x + 1;
const float* pj = patchJ + y*jsz.width;
const float* ix = Ix +
(y + minJ.y - minI.y)*(isz.width-2) + minJ.x - minI.x;
const float* iy = Iy + (ix - Ix);
for( x = 0; x < jsz.width; x++ )
{
double t = pi[x] - pj[x];
bx += (double) (t * ix[x]);
by += (double) (t * iy[x]);
Gxx += ix[x] * ix[x];
Gxy += ix[x] * iy[x];
Gyy += iy[x] * iy[x];
}
}
D = Gxx * Gyy - Gxy * Gxy;
if( D < DBL_EPSILON )
{
pt_status = 0;
break;
}
// Adi Shavit - 2008.05
if( flags & CV_LKFLOW_GET_MIN_EIGENVALS )
minEig = (Gyy + Gxx - sqrt((Gxx-Gyy)*(Gxx-Gyy) + 4.*Gxy*Gxy))/(2*jsz.height*jsz.width);
D = 1. / D;
prev_minJ = minJ;
prev_maxJ = maxJ;
}
mx = (float) ((Gyy * bx - Gxy * by) * D);
my = (float) ((Gxx * by - Gxy * bx) * D);
v.x += mx;
v.y += my;
if( mx * mx + my * my < criteria.epsilon )
break;
if( j > 0 && fabs(mx + prev_mx) < 0.01 && fabs(my + prev_my) < 0.01 )
{
v.x -= mx*0.5f;
v.y -= my*0.5f;
break;
}
prev_mx = mx;
prev_my = my;
}
featuresB[i] = v;
status[i] = (char)pt_status;
if( level == 0 && error && pt_status )
{
// calc error
double err = 0;
if( flags & CV_LKFLOW_GET_MIN_EIGENVALS )
err = minEig;
else
{
for( y = 0; y < jsz.height; y++ )
{
const float* pi = patchI +
(y + minJ.y - minI.y + 1)*isz.width + minJ.x - minI.x + 1;
const float* pj = patchJ + y*jsz.width;
for( x = 0; x < jsz.width; x++ )
{
double t = pi[x] - pj[x];
err += t * t;
}
}
err = sqrt(err);
}
error[i] = (float)err;
}
} // end of point processing loop (i)
}
const CvMat* imgI;
const CvMat* imgJ;
const CvPoint2D32f* featuresA;
CvPoint2D32f* featuresB;
char* status;
float* error;
CvTermCriteria criteria;
CvSize winSize;
int level;
int flags;
};
}
CV_IMPL void
cvCalcOpticalFlowPyrLK( const void* arrA, const void* arrB,
void* pyrarrA, void* pyrarrB,
const CvPoint2D32f * featuresA,
CvPoint2D32f * featuresB,
int count, CvSize winSize, int level,
char *status, float *error,
CvTermCriteria criteria, int flags )
{
cv::AutoBuffer<uchar> pyrBuffer;
cv::AutoBuffer<uchar> buffer;
cv::AutoBuffer<char> _status;
const int MAX_ITERS = 100;
CvMat stubA, *imgA = (CvMat*)arrA;
CvMat stubB, *imgB = (CvMat*)arrB;
CvMat pstubA, *pyrA = (CvMat*)pyrarrA;
CvMat pstubB, *pyrB = (CvMat*)pyrarrB;
CvSize imgSize;
uchar **imgI = 0;
uchar **imgJ = 0;
int *step = 0;
double *scale = 0;
CvSize* size = 0;
int i, l;
imgA = cvGetMat( imgA, &stubA );
imgB = cvGetMat( imgB, &stubB );
if( CV_MAT_TYPE( imgA->type ) != CV_8UC1 )
CV_Error( CV_StsUnsupportedFormat, "" );
if( !CV_ARE_TYPES_EQ( imgA, imgB ))
CV_Error( CV_StsUnmatchedFormats, "" );
if( !CV_ARE_SIZES_EQ( imgA, imgB ))
CV_Error( CV_StsUnmatchedSizes, "" );
if( imgA->step != imgB->step )
CV_Error( CV_StsUnmatchedSizes, "imgA and imgB must have equal steps" );
imgSize = cvGetMatSize( imgA );
if( pyrA )
{
pyrA = cvGetMat( pyrA, &pstubA );
if( pyrA->step*pyrA->height < icvMinimalPyramidSize( imgSize ) )
CV_Error( CV_StsBadArg, "pyramid A has insufficient size" );
}
else
{
pyrA = &pstubA;
pyrA->data.ptr = 0;
}
if( pyrB )
{
pyrB = cvGetMat( pyrB, &pstubB );
if( pyrB->step*pyrB->height < icvMinimalPyramidSize( imgSize ) )
CV_Error( CV_StsBadArg, "pyramid B has insufficient size" );
}
else
{
pyrB = &pstubB;
pyrB->data.ptr = 0;
}
if( count == 0 )
return;
if( !featuresA || !featuresB )
CV_Error( CV_StsNullPtr, "Some of arrays of point coordinates are missing" );
if( count < 0 )
CV_Error( CV_StsOutOfRange, "The number of tracked points is negative or zero" );
if( winSize.width <= 1 || winSize.height <= 1 )
CV_Error( CV_StsBadSize, "Invalid search window size" );
icvInitPyramidalAlgorithm( imgA, imgB, pyrA, pyrB,
level, &criteria, MAX_ITERS, flags,
&imgI, &imgJ, &step, &size, &scale, &pyrBuffer );
if( !status )
{
_status.allocate(count);
status = _status;
}
memset( status, 1, count );
if( error )
memset( error, 0, count*sizeof(error[0]) );
if( !(flags & CV_LKFLOW_INITIAL_GUESSES) )
memcpy( featuresB, featuresA, count*sizeof(featuresA[0]));
for( i = 0; i < count; i++ )
{
featuresB[i].x = (float)(featuresB[i].x * scale[level] * 0.5);
featuresB[i].y = (float)(featuresB[i].y * scale[level] * 0.5);
}
/* do processing from top pyramid level (smallest image)
to the bottom (original image) */
for( l = level; l >= 0; l-- )
{
CvMat imgI_l, imgJ_l;
cvInitMatHeader(&imgI_l, size[l].height, size[l].width, imgA->type, imgI[l], step[l]);
cvInitMatHeader(&imgJ_l, size[l].height, size[l].width, imgB->type, imgJ[l], step[l]);
cv::parallel_for(cv::BlockedRange(0, count),
cv::LKTrackerInvoker(&imgI_l, &imgJ_l, featuresA,
featuresB, status, error,
criteria, winSize, l, flags));
} // end of pyramid levels loop (l)
}
/* Affine tracking algorithm */
CV_IMPL void
cvCalcAffineFlowPyrLK( const void* arrA, const void* arrB,
void* pyrarrA, void* pyrarrB,
const CvPoint2D32f * featuresA,
CvPoint2D32f * featuresB,
float *matrices, int count,
CvSize winSize, int level,
char *status, float *error,
CvTermCriteria criteria, int flags )
{
const int MAX_ITERS = 100;
cv::AutoBuffer<char> _status;
cv::AutoBuffer<uchar> buffer;
cv::AutoBuffer<uchar> pyr_buffer;
CvMat stubA, *imgA = (CvMat*)arrA;
CvMat stubB, *imgB = (CvMat*)arrB;
CvMat pstubA, *pyrA = (CvMat*)pyrarrA;
CvMat pstubB, *pyrB = (CvMat*)pyrarrB;
static const float smoothKernel[] = { 0.09375, 0.3125, 0.09375 }; /* 3/32, 10/32, 3/32 */
int bufferBytes = 0;
uchar **imgI = 0;
uchar **imgJ = 0;
int *step = 0;
double *scale = 0;
CvSize* size = 0;
float *patchI;
float *patchJ;
float *Ix;
float *Iy;
int i, j, k, l;
CvSize patchSize = cvSize( winSize.width * 2 + 1, winSize.height * 2 + 1 );
int patchLen = patchSize.width * patchSize.height;
int patchStep = patchSize.width * sizeof( patchI[0] );
CvSize srcPatchSize = cvSize( patchSize.width + 2, patchSize.height + 2 );
int srcPatchLen = srcPatchSize.width * srcPatchSize.height;
int srcPatchStep = srcPatchSize.width * sizeof( patchI[0] );
CvSize imgSize;
float eps = (float)MIN(winSize.width, winSize.height);
imgA = cvGetMat( imgA, &stubA );
imgB = cvGetMat( imgB, &stubB );
if( CV_MAT_TYPE( imgA->type ) != CV_8UC1 )
CV_Error( CV_StsUnsupportedFormat, "" );
if( !CV_ARE_TYPES_EQ( imgA, imgB ))
CV_Error( CV_StsUnmatchedFormats, "" );
if( !CV_ARE_SIZES_EQ( imgA, imgB ))
CV_Error( CV_StsUnmatchedSizes, "" );
if( imgA->step != imgB->step )
CV_Error( CV_StsUnmatchedSizes, "imgA and imgB must have equal steps" );
if( !matrices )
CV_Error( CV_StsNullPtr, "" );
imgSize = cvGetMatSize( imgA );
if( pyrA )
{
pyrA = cvGetMat( pyrA, &pstubA );
if( pyrA->step*pyrA->height < icvMinimalPyramidSize( imgSize ) )
CV_Error( CV_StsBadArg, "pyramid A has insufficient size" );
}
else
{
pyrA = &pstubA;
pyrA->data.ptr = 0;
}
if( pyrB )
{
pyrB = cvGetMat( pyrB, &pstubB );
if( pyrB->step*pyrB->height < icvMinimalPyramidSize( imgSize ) )
CV_Error( CV_StsBadArg, "pyramid B has insufficient size" );
}
else
{
pyrB = &pstubB;
pyrB->data.ptr = 0;
}
if( count == 0 )
return;
/* check input arguments */
if( !featuresA || !featuresB || !matrices )
CV_Error( CV_StsNullPtr, "" );
if( winSize.width <= 1 || winSize.height <= 1 )
CV_Error( CV_StsOutOfRange, "the search window is too small" );
if( count < 0 )
CV_Error( CV_StsOutOfRange, "" );
icvInitPyramidalAlgorithm( imgA, imgB,
pyrA, pyrB, level, &criteria, MAX_ITERS, flags,
&imgI, &imgJ, &step, &size, &scale, &pyr_buffer );
/* buffer_size = <size for patches> + <size for pyramids> */
bufferBytes = (srcPatchLen + patchLen*3)*sizeof(patchI[0]) + (36*2 + 6)*sizeof(double);
buffer.allocate(bufferBytes);
if( !status )
{
_status.allocate(count);
status = _status;
}
patchI = (float *)(uchar*)buffer;
patchJ = patchI + srcPatchLen;
Ix = patchJ + patchLen;
Iy = Ix + patchLen;
if( status )
memset( status, 1, count );
if( !(flags & CV_LKFLOW_INITIAL_GUESSES) )
{
memcpy( featuresB, featuresA, count * sizeof( featuresA[0] ));
for( i = 0; i < count * 4; i += 4 )
{
matrices[i] = matrices[i + 3] = 1.f;
matrices[i + 1] = matrices[i + 2] = 0.f;
}
}
for( i = 0; i < count; i++ )
{
featuresB[i].x = (float)(featuresB[i].x * scale[level] * 0.5);
featuresB[i].y = (float)(featuresB[i].y * scale[level] * 0.5);
}
/* do processing from top pyramid level (smallest image)
to the bottom (original image) */
for( l = level; l >= 0; l-- )
{
CvSize levelSize = size[l];
int levelStep = step[l];
/* find flow for each given point at the particular level */
for( i = 0; i < count; i++ )
{
CvPoint2D32f u;
float Av[6];
double G[36];
double meanI = 0, meanJ = 0;
int x, y;
int pt_status = status[i];
CvMat mat;
if( !pt_status )
continue;
Av[0] = matrices[i*4];
Av[1] = matrices[i*4+1];
Av[3] = matrices[i*4+2];
Av[4] = matrices[i*4+3];
Av[2] = featuresB[i].x += featuresB[i].x;
Av[5] = featuresB[i].y += featuresB[i].y;
u.x = (float) (featuresA[i].x * scale[l]);
u.y = (float) (featuresA[i].y * scale[l]);
if( u.x < -eps || u.x >= levelSize.width+eps ||
u.y < -eps || u.y >= levelSize.height+eps ||
icvGetRectSubPix_8u32f_C1R( imgI[l], levelStep,
levelSize, patchI, srcPatchStep, srcPatchSize, u ) < 0 )
{
/* point is outside the image. take the next */
if( l == 0 )
status[i] = 0;
continue;
}
icvCalcIxIy_32f( patchI, srcPatchStep, Ix, Iy,
(srcPatchSize.width-2)*sizeof(patchI[0]), srcPatchSize,
smoothKernel, patchJ );
/* repack patchI (remove borders) */
for( k = 0; k < patchSize.height; k++ )
memcpy( patchI + k * patchSize.width,
patchI + (k + 1) * srcPatchSize.width + 1, patchStep );
memset( G, 0, sizeof( G ));
/* calculate G matrix */
for( y = -winSize.height, k = 0; y <= winSize.height; y++ )
{
for( x = -winSize.width; x <= winSize.width; x++, k++ )
{
double ixix = ((double) Ix[k]) * Ix[k];
double ixiy = ((double) Ix[k]) * Iy[k];
double iyiy = ((double) Iy[k]) * Iy[k];
double xx, xy, yy;
G[0] += ixix;
G[1] += ixiy;
G[2] += x * ixix;
G[3] += y * ixix;
G[4] += x * ixiy;
G[5] += y * ixiy;
// G[6] == G[1]
G[7] += iyiy;
// G[8] == G[4]
// G[9] == G[5]
G[10] += x * iyiy;
G[11] += y * iyiy;
xx = x * x;
xy = x * y;
yy = y * y;
// G[12] == G[2]
// G[13] == G[8] == G[4]
G[14] += xx * ixix;
G[15] += xy * ixix;
G[16] += xx * ixiy;
G[17] += xy * ixiy;
// G[18] == G[3]
// G[19] == G[9]
// G[20] == G[15]
G[21] += yy * ixix;
// G[22] == G[17]
G[23] += yy * ixiy;
// G[24] == G[4]
// G[25] == G[10]
// G[26] == G[16]
// G[27] == G[22]
G[28] += xx * iyiy;
G[29] += xy * iyiy;
// G[30] == G[5]
// G[31] == G[11]
// G[32] == G[17]
// G[33] == G[23]
// G[34] == G[29]
G[35] += yy * iyiy;
meanI += patchI[k];
}
}
meanI /= patchSize.width*patchSize.height;
G[8] = G[4];
G[9] = G[5];
G[22] = G[17];
// fill part of G below its diagonal
for( y = 1; y < 6; y++ )
for( x = 0; x < y; x++ )
G[y * 6 + x] = G[x * 6 + y];
cvInitMatHeader( &mat, 6, 6, CV_64FC1, G );
if( cvInvert( &mat, &mat, CV_SVD ) < 1e-4 )
{
/* bad matrix. take the next point */
if( l == 0 )
status[i] = 0;
continue;
}
for( j = 0; j < criteria.max_iter; j++ )
{
double b[6] = {0,0,0,0,0,0}, eta[6];
double t0, t1, s = 0;
if( Av[2] < -eps || Av[2] >= levelSize.width+eps ||
Av[5] < -eps || Av[5] >= levelSize.height+eps ||
icvGetQuadrangleSubPix_8u32f_C1R( imgJ[l], levelStep,
levelSize, patchJ, patchStep, patchSize, Av ) < 0 )
{
pt_status = 0;
break;
}
for( y = -winSize.height, k = 0, meanJ = 0; y <= winSize.height; y++ )
for( x = -winSize.width; x <= winSize.width; x++, k++ )
meanJ += patchJ[k];
meanJ = meanJ / (patchSize.width * patchSize.height) - meanI;
for( y = -winSize.height, k = 0; y <= winSize.height; y++ )
{
for( x = -winSize.width; x <= winSize.width; x++, k++ )
{
double t = patchI[k] - patchJ[k] + meanJ;
double ixt = Ix[k] * t;
double iyt = Iy[k] * t;
s += t;
b[0] += ixt;
b[1] += iyt;
b[2] += x * ixt;
b[3] += y * ixt;
b[4] += x * iyt;
b[5] += y * iyt;
}
}
for( k = 0; k < 6; k++ )
eta[k] = G[k*6]*b[0] + G[k*6+1]*b[1] + G[k*6+2]*b[2] +
G[k*6+3]*b[3] + G[k*6+4]*b[4] + G[k*6+5]*b[5];
Av[2] = (float)(Av[2] + Av[0] * eta[0] + Av[1] * eta[1]);
Av[5] = (float)(Av[5] + Av[3] * eta[0] + Av[4] * eta[1]);
t0 = Av[0] * (1 + eta[2]) + Av[1] * eta[4];
t1 = Av[0] * eta[3] + Av[1] * (1 + eta[5]);
Av[0] = (float)t0;
Av[1] = (float)t1;
t0 = Av[3] * (1 + eta[2]) + Av[4] * eta[4];
t1 = Av[3] * eta[3] + Av[4] * (1 + eta[5]);
Av[3] = (float)t0;
Av[4] = (float)t1;
if( eta[0] * eta[0] + eta[1] * eta[1] < criteria.epsilon )
break;
}
if( pt_status != 0 || l == 0 )
{
status[i] = (char)pt_status;
featuresB[i].x = Av[2];
featuresB[i].y = Av[5];
matrices[i*4] = Av[0];
matrices[i*4+1] = Av[1];
matrices[i*4+2] = Av[3];
matrices[i*4+3] = Av[4];
}
if( pt_status && l == 0 && error )
{
/* calc error */
double err = 0;
for( y = 0, k = 0; y < patchSize.height; y++ )
{
for( x = 0; x < patchSize.width; x++, k++ )
{
double t = patchI[k] - patchJ[k] + meanJ;
err += t * t;
}
}
error[i] = (float)sqrt(err);
}
}
}
}
static void
icvGetRTMatrix( const CvPoint2D32f* a, const CvPoint2D32f* b,
int count, CvMat* M, int full_affine )
{
if( full_affine )
{
double sa[36], sb[6];
CvMat A = cvMat( 6, 6, CV_64F, sa ), B = cvMat( 6, 1, CV_64F, sb );
CvMat MM = cvMat( 6, 1, CV_64F, M->data.db );
int i;
memset( sa, 0, sizeof(sa) );
memset( sb, 0, sizeof(sb) );
for( i = 0; i < count; i++ )
{
sa[0] += a[i].x*a[i].x;
sa[1] += a[i].y*a[i].x;
sa[2] += a[i].x;
sa[6] += a[i].x*a[i].y;
sa[7] += a[i].y*a[i].y;
sa[8] += a[i].y;
sa[12] += a[i].x;
sa[13] += a[i].y;
sa[14] += 1;
sb[0] += a[i].x*b[i].x;
sb[1] += a[i].y*b[i].x;
sb[2] += b[i].x;
sb[3] += a[i].x*b[i].y;
sb[4] += a[i].y*b[i].y;
sb[5] += b[i].y;
}
sa[21] = sa[0];
sa[22] = sa[1];
sa[23] = sa[2];
sa[27] = sa[6];
sa[28] = sa[7];
sa[29] = sa[8];
sa[33] = sa[12];
sa[34] = sa[13];
sa[35] = sa[14];
cvSolve( &A, &B, &MM, CV_SVD );
}
else
{
double sa[16], sb[4], m[4], *om = M->data.db;
CvMat A = cvMat( 4, 4, CV_64F, sa ), B = cvMat( 4, 1, CV_64F, sb );
CvMat MM = cvMat( 4, 1, CV_64F, m );
int i;
memset( sa, 0, sizeof(sa) );
memset( sb, 0, sizeof(sb) );
for( i = 0; i < count; i++ )
{
sa[0] += a[i].x*a[i].x + a[i].y*a[i].y;
sa[1] += 0;
sa[2] += a[i].x;
sa[3] += a[i].y;
sa[4] += 0;
sa[5] += a[i].x*a[i].x + a[i].y*a[i].y;
sa[6] += -a[i].y;
sa[7] += a[i].x;
sa[8] += a[i].x;
sa[9] += -a[i].y;
sa[10] += 1;
sa[11] += 0;
sa[12] += a[i].y;
sa[13] += a[i].x;
sa[14] += 0;
sa[15] += 1;
sb[0] += a[i].x*b[i].x + a[i].y*b[i].y;
sb[1] += a[i].x*b[i].y - a[i].y*b[i].x;
sb[2] += b[i].x;
sb[3] += b[i].y;
}
cvSolve( &A, &B, &MM, CV_SVD );
om[0] = om[4] = m[0];
om[1] = -m[1];
om[3] = m[1];
om[2] = m[2];
om[5] = m[3];
}
}
CV_IMPL int
cvEstimateRigidTransform( const CvArr* matA, const CvArr* matB, CvMat* matM, int full_affine )
{
const int COUNT = 15;
const int WIDTH = 160, HEIGHT = 120;
const int RANSAC_MAX_ITERS = 500;
const int RANSAC_SIZE0 = 3;
const double RANSAC_GOOD_RATIO = 0.5;
cv::Ptr<CvMat> sA, sB;
cv::AutoBuffer<CvPoint2D32f> pA, pB;
cv::AutoBuffer<int> good_idx;
cv::AutoBuffer<char> status;
cv::Ptr<CvMat> gray;
CvMat stubA, *A = cvGetMat( matA, &stubA );
CvMat stubB, *B = cvGetMat( matB, &stubB );
CvSize sz0, sz1;
int cn, equal_sizes;
int i, j, k, k1;
int count_x, count_y, count = 0;
double scale = 1;
CvRNG rng = cvRNG(-1);
double m[6]={0};
CvMat M = cvMat( 2, 3, CV_64F, m );
int good_count = 0;
CvRect brect;
if( !CV_IS_MAT(matM) )
CV_Error( matM ? CV_StsBadArg : CV_StsNullPtr, "Output parameter M is not a valid matrix" );
if( !CV_ARE_SIZES_EQ( A, B ) )
CV_Error( CV_StsUnmatchedSizes, "Both input images must have the same size" );
if( !CV_ARE_TYPES_EQ( A, B ) )
CV_Error( CV_StsUnmatchedFormats, "Both input images must have the same data type" );
if( CV_MAT_TYPE(A->type) == CV_8UC1 || CV_MAT_TYPE(A->type) == CV_8UC3 )
{
cn = CV_MAT_CN(A->type);
sz0 = cvGetSize(A);
sz1 = cvSize(WIDTH, HEIGHT);
scale = MAX( (double)sz1.width/sz0.width, (double)sz1.height/sz0.height );
scale = MIN( scale, 1. );
sz1.width = cvRound( sz0.width * scale );
sz1.height = cvRound( sz0.height * scale );
equal_sizes = sz1.width == sz0.width && sz1.height == sz0.height;
if( !equal_sizes || cn != 1 )
{
sA = cvCreateMat( sz1.height, sz1.width, CV_8UC1 );
sB = cvCreateMat( sz1.height, sz1.width, CV_8UC1 );
if( cn != 1 )
{
gray = cvCreateMat( sz0.height, sz0.width, CV_8UC1 );
cvCvtColor( A, gray, CV_BGR2GRAY );
cvResize( gray, sA, CV_INTER_AREA );
cvCvtColor( B, gray, CV_BGR2GRAY );
cvResize( gray, sB, CV_INTER_AREA );
gray.release();
}
else
{
cvResize( A, sA, CV_INTER_AREA );
cvResize( B, sB, CV_INTER_AREA );
}
A = sA;
B = sB;
}
count_y = COUNT;
count_x = cvRound((double)COUNT*sz1.width/sz1.height);
count = count_x * count_y;
pA.allocate(count);
pB.allocate(count);
status.allocate(count);
for( i = 0, k = 0; i < count_y; i++ )
for( j = 0; j < count_x; j++, k++ )
{
pA[k].x = (j+0.5f)*sz1.width/count_x;
pA[k].y = (i+0.5f)*sz1.height/count_y;
}
// find the corresponding points in B
cvCalcOpticalFlowPyrLK( A, B, 0, 0, pA, pB, count, cvSize(10,10), 3,
status, 0, cvTermCriteria(CV_TERMCRIT_ITER,40,0.1), 0 );
// repack the remained points
for( i = 0, k = 0; i < count; i++ )
if( status[i] )
{
if( i > k )
{
pA[k] = pA[i];
pB[k] = pB[i];
}
k++;
}
count = k;
}
else if( CV_MAT_TYPE(A->type) == CV_32FC2 || CV_MAT_TYPE(A->type) == CV_32SC2 )
{
count = A->cols*A->rows;
CvMat _pA, _pB;
pA.allocate(count);
pB.allocate(count);
_pA = cvMat( A->rows, A->cols, CV_32FC2, pA );
_pB = cvMat( B->rows, B->cols, CV_32FC2, pB );
cvConvert( A, &_pA );
cvConvert( B, &_pB );
}
else
CV_Error( CV_StsUnsupportedFormat, "Both input images must have either 8uC1 or 8uC3 type" );
good_idx.allocate(count);
if( count < RANSAC_SIZE0 )
return 0;
CvMat _pB = cvMat(1, count, CV_32FC2, pB);
brect = cvBoundingRect(&_pB, 1);
// RANSAC stuff:
// 1. find the consensus
for( k = 0; k < RANSAC_MAX_ITERS; k++ )
{
int idx[RANSAC_SIZE0];
CvPoint2D32f a[3];
CvPoint2D32f b[3];
memset( a, 0, sizeof(a) );
memset( b, 0, sizeof(b) );
// choose random 3 non-complanar points from A & B
for( i = 0; i < RANSAC_SIZE0; i++ )
{
for( k1 = 0; k1 < RANSAC_MAX_ITERS; k1++ )
{
idx[i] = cvRandInt(&rng) % count;
for( j = 0; j < i; j++ )
{
if( idx[j] == idx[i] )
break;
// check that the points are not very close one each other
if( fabs(pA[idx[i]].x - pA[idx[j]].x) +
fabs(pA[idx[i]].y - pA[idx[j]].y) < FLT_EPSILON )
break;
if( fabs(pB[idx[i]].x - pB[idx[j]].x) +
fabs(pB[idx[i]].y - pB[idx[j]].y) < FLT_EPSILON )
break;
}
if( j < i )
continue;
if( i+1 == RANSAC_SIZE0 )
{
// additional check for non-complanar vectors
a[0] = pA[idx[0]];
a[1] = pA[idx[1]];
a[2] = pA[idx[2]];
b[0] = pB[idx[0]];
b[1] = pB[idx[1]];
b[2] = pB[idx[2]];
double dax1 = a[1].x - a[0].x, day1 = a[1].y - a[0].y;
double dax2 = a[2].x - a[0].x, day2 = a[2].y - a[0].y;
double dbx1 = b[1].x - b[0].y, dby1 = b[1].y - b[0].y;
double dbx2 = b[2].x - b[0].x, dby2 = b[2].y - b[0].y;
const double eps = 0.01;
if( fabs(dax1*day2 - day1*dax2) < eps*sqrt(dax1*dax1+day1*day1)*sqrt(dax2*dax2+day2*day2) ||
fabs(dbx1*dby2 - dby1*dbx2) < eps*sqrt(dbx1*dbx1+dby1*dby1)*sqrt(dbx2*dbx2+dby2*dby2) )
continue;
}
break;
}
if( k1 >= RANSAC_MAX_ITERS )
break;
}
if( i < RANSAC_SIZE0 )
continue;
// estimate the transformation using 3 points
icvGetRTMatrix( a, b, 3, &M, full_affine );
for( i = 0, good_count = 0; i < count; i++ )
{
if( fabs( m[0]*pA[i].x + m[1]*pA[i].y + m[2] - pB[i].x ) +
fabs( m[3]*pA[i].x + m[4]*pA[i].y + m[5] - pB[i].y ) < MAX(brect.width,brect.height)*0.05 )
good_idx[good_count++] = i;
}
if( good_count >= count*RANSAC_GOOD_RATIO )
break;
}
if( k >= RANSAC_MAX_ITERS )
return 0;
if( good_count < count )
{
for( i = 0; i < good_count; i++ )
{
j = good_idx[i];
pA[i] = pA[j];
pB[i] = pB[j];
}
}
icvGetRTMatrix( pA, pB, good_count, &M, full_affine );
m[2] /= scale;
m[5] /= scale;
cvConvert( &M, matM );
return 1;
}
namespace cv
{
Mat estimateRigidTransform( const Mat& A,
const Mat& B,
bool fullAffine )
{
Mat M(2, 3, CV_64F);
CvMat matA = A, matB = B, matM = M;
cvEstimateRigidTransform(&matA, &matB, &matM, fullAffine);
return M;
}
}
/* End of file. */