Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

222 lines
7.2 KiB

//*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <stdio.h>
#include <iostream>
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/contrib/hybridtracker.hpp"
using namespace cv;
CvFeatureTracker::CvFeatureTracker(CvFeatureTrackerParams _params) :
params(_params)
{
switch (params.feature_type)
{
case CvFeatureTrackerParams::SIFT:
dd = Algorithm::create<Feature2D>("Feature2D.SIFT");
if( dd.empty() )
CV_Error(CV_StsNotImplemented, "OpenCV has been compiled without SIFT support");
dd->set("nOctaveLayers", 5);
dd->set("contrastThreshold", 0.04);
dd->set("edgeThreshold", 10.7);
case CvFeatureTrackerParams::SURF:
dd = Algorithm::create<Feature2D>("Feature2D.SURF");
if( dd.empty() )
CV_Error(CV_StsNotImplemented, "OpenCV has been compiled without SURF support");
dd->set("hessianThreshold", 400);
dd->set("nOctaves", 3);
dd->set("nOctaveLayers", 4);
default:
CV_Error(CV_StsBadArg, "Unknown feature type");
}
matcher = new BFMatcher(NORM_L2);
}
CvFeatureTracker::~CvFeatureTracker()
{
}
void CvFeatureTracker::newTrackingWindow(Mat image, Rect selection)
{
image.copyTo(prev_image);
cvtColor(prev_image, prev_image_bw, CV_BGR2GRAY);
prev_trackwindow = selection;
prev_center.x = selection.x;
prev_center.y = selection.y;
ittr = 0;
}
Rect CvFeatureTracker::updateTrackingWindow(Mat image)
{
if(params.feature_type == CvFeatureTrackerParams::OPTICAL_FLOW)
return updateTrackingWindowWithFlow(image);
else
13 years ago
return updateTrackingWindowWithSIFT(image);
}
Rect CvFeatureTracker::updateTrackingWindowWithSIFT(Mat image)
{
ittr++;
vector<KeyPoint> prev_keypoints, curr_keypoints;
vector<Point2f> prev_keys, curr_keys;
Mat prev_desc, curr_desc;
Rect window = prev_trackwindow;
Mat mask = Mat::zeros(image.size(), CV_8UC1);
rectangle(mask, Point(window.x, window.y), Point(window.x + window.width,
window.y + window.height), Scalar(255), CV_FILLED);
dd->operator()(prev_image, mask, prev_keypoints, prev_desc);
window.x -= params.window_size;
window.y -= params.window_size;
window.width += params.window_size;
window.height += params.window_size;
rectangle(mask, Point(window.x, window.y), Point(window.x + window.width,
window.y + window.height), Scalar(255), CV_FILLED);
dd->operator()(image, mask, curr_keypoints, curr_desc);
if (prev_keypoints.size() > 4 && curr_keypoints.size() > 4)
{
//descriptor->compute(prev_image, prev_keypoints, prev_desc);
//descriptor->compute(image, curr_keypoints, curr_desc);
matcher->match(prev_desc, curr_desc, matches);
for (int i = 0; i < (int)matches.size(); i++)
{
prev_keys.push_back(prev_keypoints[matches[i].queryIdx].pt);
curr_keys.push_back(curr_keypoints[matches[i].trainIdx].pt);
}
Mat T = findHomography(prev_keys, curr_keys, CV_LMEDS);
prev_trackwindow.x += cvRound(T.at<double> (0, 2));
prev_trackwindow.y += cvRound(T.at<double> (1, 2));
}
prev_center.x = prev_trackwindow.x;
prev_center.y = prev_trackwindow.y;
prev_image = image;
return prev_trackwindow;
}
Rect CvFeatureTracker::updateTrackingWindowWithFlow(Mat image)
{
ittr++;
Size subPixWinSize(10,10), winSize(31,31);
Mat image_bw;
TermCriteria termcrit(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03);
vector<uchar> status;
vector<float> err;
cvtColor(image, image_bw, CV_BGR2GRAY);
cvtColor(prev_image, prev_image_bw, CV_BGR2GRAY);
if (ittr == 1)
{
Mat mask = Mat::zeros(image.size(), CV_8UC1);
rectangle(mask, Point(prev_trackwindow.x, prev_trackwindow.y), Point(
prev_trackwindow.x + prev_trackwindow.width, prev_trackwindow.y
+ prev_trackwindow.height), Scalar(255), CV_FILLED);
goodFeaturesToTrack(image_bw, features[1], 500, 0.01, 20, mask, 3, 0, 0.04);
cornerSubPix(image_bw, features[1], subPixWinSize, Size(-1, -1), termcrit);
}
else
{
calcOpticalFlowPyrLK(prev_image_bw, image_bw, features[0], features[1],
status, err, winSize, 3, termcrit);
Point2f feature0_center(0, 0);
Point2f feature1_center(0, 0);
int goodtracks = 0;
for (int i = 0; i < (int)features[1].size(); i++)
{
if (status[i] == 1)
{
feature0_center.x += features[0][i].x;
feature0_center.y += features[0][i].y;
feature1_center.x += features[1][i].x;
feature1_center.y += features[1][i].y;
goodtracks++;
}
}
feature0_center.x /= goodtracks;
feature0_center.y /= goodtracks;
feature1_center.x /= goodtracks;
feature1_center.y /= goodtracks;
prev_center.x += (feature1_center.x - feature0_center.x);
prev_center.y += (feature1_center.y - feature0_center.y);
prev_trackwindow.x = (int)prev_center.x;
prev_trackwindow.y = (int)prev_center.y;
}
swap(features[0], features[1]);
image.copyTo(prev_image);
return prev_trackwindow;
}
void CvFeatureTracker::setTrackingWindow(Rect _window)
{
prev_trackwindow = _window;
}
Rect CvFeatureTracker::getTrackingWindow()
{
return prev_trackwindow;
}
Point2f CvFeatureTracker::getTrackingCenter()
{
Point2f center(0, 0);
center.x = (float)(prev_center.x + prev_trackwindow.width/2.0);
center.y = (float)(prev_center.y + prev_trackwindow.height/2.0);
return center;
}