Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2192 lines
66 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/* ////////////////////////////////////////////////////////////////////
//
// Matrix arithmetic and logical operations: +, -, *, /, &, |, ^, ~, abs ...
//
// */
#include "precomp.hpp"
#ifdef HAVE_IPP
#include "ippversion.h"
#endif
namespace cv
{
#if CV_SSE2
enum { ARITHM_SIMD = CV_CPU_SSE2 };
template<class Op8> struct VBinOp8
{
int operator()(const uchar* src1, const uchar* src2, uchar* dst, int len) const
{
int x = 0;
for( ; x <= len - 32; x += 32 )
{
__m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x));
__m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 16));
r0 = op(r0,_mm_loadu_si128((const __m128i*)(src2 + x)));
r1 = op(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 16)));
_mm_storeu_si128((__m128i*)(dst + x), r0);
_mm_storeu_si128((__m128i*)(dst + x + 16), r1);
}
for( ; x <= len - 8; x += 8 )
{
__m128i r0 = _mm_loadl_epi64((const __m128i*)(src1 + x));
r0 = op(r0,_mm_loadl_epi64((const __m128i*)(src2 + x)));
_mm_storel_epi64((__m128i*)(dst + x), r0);
}
return x;
}
Op8 op;
};
template<typename T, class Op16> struct VBinOp16
{
int operator()(const T* src1, const T* src2, T* dst, int len) const
{
int x = 0;
for( ; x <= len - 16; x += 16 )
{
__m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x));
__m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 8));
r0 = op(r0,_mm_loadu_si128((const __m128i*)(src2 + x)));
r1 = op(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 8)));
_mm_storeu_si128((__m128i*)(dst + x), r0);
_mm_storeu_si128((__m128i*)(dst + x + 8), r1);
}
for( ; x <= len - 4; x += 4 )
{
__m128i r0 = _mm_loadl_epi64((const __m128i*)(src1 + x));
r0 = op(r0,_mm_loadl_epi64((const __m128i*)(src2 + x)));
_mm_storel_epi64((__m128i*)(dst + x), r0);
}
return x;
}
Op16 op;
};
template<class Op32f> struct VBinOp32f
{
int operator()(const float* src1, const float* src2, float* dst, int len) const
{
int x = 0;
if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
for( ; x <= len - 8; x += 8 )
{
__m128 r0 = _mm_load_ps(src1 + x);
__m128 r1 = _mm_load_ps(src1 + x + 4);
r0 = op(r0,_mm_load_ps(src2 + x));
r1 = op(r1,_mm_load_ps(src2 + x + 4));
_mm_store_ps(dst + x, r0);
_mm_store_ps(dst + x + 4, r1);
}
else
for( ; x <= len - 8; x += 8 )
{
__m128 r0 = _mm_loadu_ps(src1 + x);
__m128 r1 = _mm_loadu_ps(src1 + x + 4);
r0 = op(r0,_mm_loadu_ps(src2 + x));
r1 = op(r1,_mm_loadu_ps(src2 + x + 4));
_mm_storeu_ps(dst + x, r0);
_mm_storeu_ps(dst + x + 4, r1);
}
return x;
}
Op32f op;
};
struct _VAdd8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epu8(a,b); }};
struct _VSub8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epu8(a,b); }};
struct _VMin8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_min_epu8(a,b); }};
struct _VMax8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_max_epu8(a,b); }};
struct _VCmpGT8u { __m128i operator()(const __m128i& a, const __m128i& b) const
{
__m128i delta = _mm_set1_epi32(0x80808080);
return _mm_cmpgt_epi8(_mm_xor_si128(a,delta),_mm_xor_si128(b,delta));
}};
struct _VCmpEQ8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_cmpeq_epi8(a,b); }};
struct _VAbsDiff8u
{
__m128i operator()(const __m128i& a, const __m128i& b) const
{ return _mm_add_epi8(_mm_subs_epu8(a,b),_mm_subs_epu8(b,a)); }
};
struct _VAdd16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epu16(a,b); }};
struct _VSub16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epu16(a,b); }};
struct _VMin16u
{
__m128i operator()(const __m128i& a, const __m128i& b) const
{ return _mm_subs_epu16(a,_mm_subs_epu16(a,b)); }
};
struct _VMax16u
{
__m128i operator()(const __m128i& a, const __m128i& b) const
{ return _mm_adds_epu16(_mm_subs_epu16(a,b),b); }
};
struct _VAbsDiff16u
{
__m128i operator()(const __m128i& a, const __m128i& b) const
{ return _mm_add_epi16(_mm_subs_epu16(a,b),_mm_subs_epu16(b,a)); }
};
struct _VAdd16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epi16(a,b); }};
struct _VSub16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epi16(a,b); }};
struct _VMin16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_min_epi16(a,b); }};
struct _VMax16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_max_epi16(a,b); }};
struct _VAbsDiff16s
{
__m128i operator()(const __m128i& a, const __m128i& b) const
{
__m128i M = _mm_max_epi16(a,b), m = _mm_min_epi16(a,b);
return _mm_subs_epi16(M, m);
}
};
struct _VAdd32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_add_ps(a,b); }};
struct _VSub32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_sub_ps(a,b); }};
struct _VMin32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_min_ps(a,b); }};
struct _VMax32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_max_ps(a,b); }};
static int CV_DECL_ALIGNED(16) v32f_absmask[] = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff };
struct _VAbsDiff32f
{
__m128 operator()(const __m128& a, const __m128& b) const
{
return _mm_and_ps(_mm_sub_ps(a,b), *(const __m128*)v32f_absmask);
}
};
struct _VAnd8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_and_si128(a,b); }};
struct _VOr8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_or_si128(a,b); }};
struct _VXor8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_xor_si128(a,b); }};
typedef VBinOp8<_VAdd8u> VAdd8u;
typedef VBinOp8<_VSub8u> VSub8u;
typedef VBinOp8<_VMin8u> VMin8u;
typedef VBinOp8<_VMax8u> VMax8u;
typedef VBinOp8<_VAbsDiff8u> VAbsDiff8u;
typedef VBinOp8<_VCmpEQ8u> VCmpEQ8u;
typedef VBinOp8<_VCmpGT8u> VCmpGT8u;
typedef VBinOp16<ushort, _VAdd16u> VAdd16u;
typedef VBinOp16<ushort, _VSub16u> VSub16u;
typedef VBinOp16<ushort, _VMin16u> VMin16u;
typedef VBinOp16<ushort, _VMax16u> VMax16u;
typedef VBinOp16<ushort, _VAbsDiff16u> VAbsDiff16u;
typedef VBinOp16<short, _VAdd16s> VAdd16s;
typedef VBinOp16<short, _VSub16s> VSub16s;
typedef VBinOp16<short, _VMin16s> VMin16s;
typedef VBinOp16<short, _VMax16s> VMax16s;
typedef VBinOp16<short, _VAbsDiff16s> VAbsDiff16s;
typedef VBinOp32f<_VAdd32f> VAdd32f;
typedef VBinOp32f<_VSub32f> VSub32f;
typedef VBinOp32f<_VMin32f> VMin32f;
typedef VBinOp32f<_VMax32f> VMax32f;
typedef VBinOp32f<_VAbsDiff32f> VAbsDiff32f;
typedef VBinOp8<_VAnd8u> VAnd8u;
typedef VBinOp8<_VOr8u> VOr8u;
typedef VBinOp8<_VXor8u> VXor8u;
#else
enum { ARITHM_SIMD = CV_CPU_NONE };
typedef NoVec VAdd8u;
typedef NoVec VSub8u;
typedef NoVec VMin8u;
typedef NoVec VMax8u;
typedef NoVec VAbsDiff8u;
typedef NoVec VCmpEQ8u;
typedef NoVec VCmpGT8u;
typedef NoVec VAdd16u;
typedef NoVec VSub16u;
typedef NoVec VMin16u;
typedef NoVec VMax16u;
typedef NoVec VAbsDiff16u;
typedef NoVec VAdd16s;
typedef NoVec VSub16s;
typedef NoVec VMin16s;
typedef NoVec VMax16s;
typedef NoVec VAbsDiff16s;
typedef NoVec VAdd32f;
typedef NoVec VSub32f;
typedef NoVec VMin32f;
typedef NoVec VMax32f;
typedef NoVec VAbsDiff32f;
typedef NoVec VAnd8u;
typedef NoVec VOr8u;
typedef NoVec VXor8u;
#endif
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
struct ippAdd8u
{
int operator()(const Ipp8u* src1, const Ipp8u* src2, Ipp8u* dst, int len) const
{
ippsAdd_8u_Sfs(src1,src2,dst,len,0);
return len;
}
};
struct ippAdd16u
{
int operator()(const Ipp16u* src1, const Ipp16u* src2, Ipp16u* dst, int len) const
{
ippsAdd_16u_Sfs(src1,src2,dst,len,0);
return len;
}
};
struct ippAdd16s
{
int operator()(const Ipp16s* src1, const Ipp16s* src2, Ipp16s* dst, int len) const
{
ippsAdd_16s_Sfs(src1,src2,dst,len,0);
return len;
}
};
struct ippAdd32s
{
int operator()(const Ipp32s* src1, const Ipp32s* src2, Ipp32s* dst, int len) const
{
ippsAdd_32s_Sfs(src1,src2,dst,len,0);
return len;
}
};
struct ippAdd32f
{
int operator()(const Ipp32f* src1, const Ipp32f* src2, Ipp32f* dst, int len) const
{
ippsAdd_32f(src1,src2,dst,len);
return len;
}
};
struct ippAdd64f
{
int operator()(const Ipp64f* src1, const Ipp64f* src2, Ipp64f* dst, int len) const
{
ippsAdd_64f(src1,src2,dst,len);
return len;
}
};
struct ippSub8u
{
int operator()(const Ipp8u* src1, const Ipp8u* src2, Ipp8u* dst, int len) const
{
ippsSub_8u_Sfs(src1,src2,dst,len,0);
return len;
}
};
struct ippSub16u
{
int operator()(const Ipp16u* src1, const Ipp16u* src2, Ipp16u* dst, int len) const
{
ippsSub_16u_Sfs(src1,src2,dst,len,0);
return len;
}
};
struct ippSub16s
{
int operator()(const Ipp16s* src1, const Ipp16s* src2, Ipp16s* dst, int len) const
{
ippsSub_16s_Sfs(src1,src2,dst,len,0);
return len;
}
};
struct ippSub32s
{
int operator()(const Ipp32s* src1, const Ipp32s* src2, Ipp32s* dst, int len) const
{
ippsSub_32s_Sfs(src1,src2,dst,len,0);
return len;
}
};
struct ippSub32f
{
int operator()(const Ipp32f* src1, const Ipp32f* src2, Ipp32f* dst, int len) const
{
ippsSub_32f(src1,src2,dst,len);
return len;
}
};
struct ippSub64f
{
int operator()(const Ipp64f* src1, const Ipp64f* src2, Ipp64f* dst, int len) const
{
ippsSub_64f(src1,src2,dst,len);
return len;
}
};
#endif
/****************************************************************************************\
* logical operations *
\****************************************************************************************/
template<typename T> struct AndOp
{
typedef T type1;
typedef T type2;
typedef T rtype;
T operator()( T a, T b ) const { return a & b; }
};
template<typename T> struct OrOp
{
typedef T type1;
typedef T type2;
typedef T rtype;
T operator()( T a, T b ) const { return a | b; }
};
template<typename T> struct XorOp
{
typedef T type1;
typedef T type2;
typedef T rtype;
T operator()( T a, T b ) const { return a ^ b; }
};
template<class OPB, class OPI, class OPV> static void
bitwiseOp_( const Mat& srcmat1, const Mat& srcmat2, Mat& dstmat )
{
OPB opb; OPI opi; OPV opv;
const uchar* src1 = srcmat1.data;
const uchar* src2 = srcmat2.data;
uchar* dst = dstmat.data;
size_t step1 = srcmat1.step, step2 = srcmat2.step, step = dstmat.step;
Size size = getContinuousSize( srcmat1, srcmat2, dstmat, (int)srcmat1.elemSize() );
bool useSIMD = checkHardwareSupport(ARITHM_SIMD);
for( ; size.height--; src1 += step1, src2 += step2, dst += step )
{
int i = useSIMD ? opv(src1, src2, dst, size.width) : 0;
if( (((size_t)src1 | (size_t)src2 | (size_t)dst) & 3) == 0 )
{
for( ; i <= size.width - 16; i += 16 )
{
int t0 = opi(((const int*)(src1+i))[0], ((const int*)(src2+i))[0]);
int t1 = opi(((const int*)(src1+i))[1], ((const int*)(src2+i))[1]);
((int*)(dst+i))[0] = t0;
((int*)(dst+i))[1] = t1;
t0 = opi(((const int*)(src1+i))[2], ((const int*)(src2+i))[2]);
t1 = opi(((const int*)(src1+i))[3], ((const int*)(src2+i))[3]);
((int*)(dst+i))[2] = t0;
((int*)(dst+i))[3] = t1;
}
for( ; i <= size.width - 4; i += 4 )
{
int t = opi(*(const int*)(src1+i), *(const int*)(src2+i));
*(int*)(dst+i) = t;
}
}
for( ; i < size.width; i++ )
dst[i] = opb(src1[i], src2[i]);
}
}
template<class OPB, class OPI, class OPV> static void
bitwiseSOp_( const Mat& srcmat, Mat& dstmat, const Scalar& _scalar )
{
OPB opb; OPI opi; OPV opv;
const uchar* src0 = srcmat.data;
uchar* dst0 = dstmat.data;
size_t step1 = srcmat.step, step = dstmat.step;
Size size = getContinuousSize( srcmat, dstmat, (int)srcmat.elemSize() );
const int delta = 96;
uchar scalar[delta];
scalarToRawData(_scalar, scalar, srcmat.type(), (int)(delta/srcmat.elemSize1()) );
bool useSIMD = checkHardwareSupport(ARITHM_SIMD);
for( ; size.height--; src0 += step1, dst0 += step )
{
const uchar* src = (const uchar*)src0;
uchar* dst = dst0;
int i, len = size.width;
if( (((size_t)src|(size_t)dst) & 3) == 0 )
{
while( (len -= delta) >= 0 )
{
i = useSIMD ? opv(src, scalar, dst, delta) : 0;
for( ; i < delta; i += 16 )
{
int t0 = opi(((const int*)(src+i))[0], ((const int*)(scalar+i))[0]);
int t1 = opi(((const int*)(src+i))[1], ((const int*)(scalar+i))[1]);
((int*)(dst+i))[0] = t0;
((int*)(dst+i))[1] = t1;
t0 = opi(((const int*)(src+i))[2], ((const int*)(scalar+i))[2]);
t1 = opi(((const int*)(src+i))[3], ((const int*)(scalar+i))[3]);
((int*)(dst+i))[2] = t0;
((int*)(dst+i))[3] = t1;
}
src += delta;
dst += delta;
}
}
else
{
while( (len -= delta) >= 0 )
{
for( i = 0; i < delta; i += 4 )
{
uchar t0 = opb(src[i], scalar[i]);
uchar t1 = opb(src[i+1], scalar[i+1]);
dst[i] = t0; dst[i+1] = t1;
t0 = opb(src[i+2], scalar[i+2]);
t1 = opb(src[i+3], scalar[i+3]);
dst[i+2] = t0; dst[i+3] = t1;
}
src += delta;
dst += delta;
}
}
for( len += delta, i = 0; i < len; i++ )
dst[i] = opb(src[i],scalar[i]);
}
}
static void
binaryOp( const Mat& src1, const Mat& src2, Mat& dst, BinaryFunc func, int dsttype=-1 )
{
if( dsttype == -1 )
dsttype = src1.type();
CV_Assert( src1.type() == src2.type() && func != 0 );
if( src1.dims > 2 || src2.dims > 2 )
{
dst.create(src1.dims, src1.size, dsttype);
const Mat* arrays[] = { &src1, &src2, &dst, 0 };
Mat planes[3];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func(it.planes[0], it.planes[1], it.planes[2]);
return;
}
CV_Assert( src1.size() == src2.size() );
dst.create( src1.size(), dsttype );
func( src1, src2, dst );
}
static void
binaryMaskOp( const Mat& src1, const Mat& src2, Mat& dst,
const Mat& mask, BinaryFunc func )
{
CV_Assert( src1.type() == src2.type() && func != 0 );
if( src1.dims > 2 || src2.dims > 2 )
{
dst.create(src1.dims, src1.size, src1.type());
const Mat* arrays[] = { &src1, &src2, &dst, &mask, 0 };
Mat planes[4];
NAryMatIterator it(arrays, planes);
if( !mask.data )
for( int i = 0; i < it.nplanes; i++, ++it )
func(it.planes[0], it.planes[1], it.planes[2]);
else
for( int i = 0; i < it.nplanes; i++, ++it )
binaryMaskOp(it.planes[0], it.planes[1],
it.planes[2], it.planes[3],
func);
return;
}
CV_Assert( src1.size() == src2.size() );
dst.create( src1.size(), src1.type() );
if( !mask.data )
func(src1, src2, dst);
else
{
AutoBuffer<uchar> buf;
size_t esz = dst.elemSize(), buf_step = dst.cols*esz;
CopyMaskFunc copym_func = getCopyMaskFunc((int)esz);
int y, dy;
CV_Assert(mask.type() == CV_8UC1 && mask.size() == dst.size());
dy = std::min(std::max((int)(CV_MAX_LOCAL_SIZE/buf_step), 1), dst.rows);
buf.allocate( buf_step*dy );
for( y = 0; y < dst.rows; y += dy )
{
dy = std::min(dy, dst.rows - y);
Mat dstpart = dst.rowRange(y, y + dy);
Mat temp(dy, dst.cols, dst.type(), (uchar*)buf );
func( src1.rowRange(y, y + dy), src2.rowRange(y, y + dy), temp );
copym_func( temp, dstpart, mask.rowRange(y, y + dy) );
}
}
}
static void
binarySMaskOp( const Mat& src1, const Scalar& s, Mat& dst,
const Mat& mask, BinarySFuncCn func )
{
CV_Assert( func != 0 );
if( src1.dims > 2 )
{
dst.create(src1.dims, src1.size, src1.type());
const Mat* arrays[] = { &src1, &dst, &mask, 0 };
Mat planes[3];
NAryMatIterator it(arrays, planes);
if( !mask.data )
for( int i = 0; i < it.nplanes; i++, ++it )
func(it.planes[0], it.planes[1], s);
else
for( int i = 0; i < it.nplanes; i++, ++it )
binarySMaskOp(it.planes[0], s, it.planes[1],
it.planes[2], func);
return;
}
dst.create( src1.size(), src1.type() );
if( !mask.data )
func(src1, dst, s);
else
{
AutoBuffer<uchar> buf;
size_t esz = dst.elemSize(), buf_step = dst.cols*esz;
CopyMaskFunc copym_func = getCopyMaskFunc((int)esz);
int y, dy;
CV_Assert(mask.type() == CV_8UC1 && mask.size() == dst.size());
dy = std::min(std::max((int)(CV_MAX_LOCAL_SIZE/buf_step), 1), dst.rows);
buf.allocate( buf_step*dy );
for( y = 0; y < dst.rows; y += dy )
{
dy = std::min(dy, dst.rows - y);
Mat dstpart = dst.rowRange(y, y + dy);
Mat temp(dy, dst.cols, dst.type(), (uchar*)buf);
func( src1.rowRange(y, y + dy), temp, s );
copym_func( temp, dstpart, mask.rowRange(y, y + dy) );
}
}
}
void bitwise_and(const Mat& a, const Mat& b, Mat& c, const Mat& mask)
{
binaryMaskOp(a, b, c, mask, bitwiseOp_<AndOp<uchar>, AndOp<int>, VAnd8u>);
}
void bitwise_or(const Mat& a, const Mat& b, Mat& c, const Mat& mask)
{
binaryMaskOp(a, b, c, mask, bitwiseOp_<OrOp<uchar>, OrOp<int>, VOr8u>);
}
void bitwise_xor(const Mat& a, const Mat& b, Mat& c, const Mat& mask)
{
binaryMaskOp(a, b, c, mask, bitwiseOp_<XorOp<uchar>, XorOp<int>, VXor8u>);
}
void bitwise_and(const Mat& a, const Scalar& s, Mat& c, const Mat& mask)
{
binarySMaskOp(a, s, c, mask,
bitwiseSOp_<AndOp<uchar>, AndOp<int>, VAnd8u>);
}
void bitwise_or(const Mat& a, const Scalar& s, Mat& c, const Mat& mask)
{
binarySMaskOp(a, s, c, mask,
bitwiseSOp_<OrOp<uchar>, OrOp<int>, VOr8u>);
}
void bitwise_xor(const Mat& a, const Scalar& s, Mat& c, const Mat& mask)
{
binarySMaskOp(a, s, c, mask,
bitwiseSOp_<XorOp<uchar>, XorOp<int>, VXor8u>);
}
void bitwise_not(const Mat& src, Mat& dst)
{
if( src.dims > 2 )
{
dst.create(src.dims, src.size, src.type());
const Mat* arrays[] = { &src, &dst, 0 };
Mat planes[4];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
bitwise_not(it.planes[0], it.planes[1]);
return;
}
const uchar* sptr = src.data;
dst.create( src.size(), src.type() );
uchar* dptr = dst.data;
Size size = getContinuousSize( src, dst, (int)src.elemSize() );
for( ; size.height--; sptr += src.step, dptr += dst.step )
{
int i = 0;
if( (((size_t)sptr | (size_t)dptr) & 3) == 0 )
{
for( ; i <= size.width - 16; i += 16 )
{
int t0 = ~((const int*)(sptr+i))[0];
int t1 = ~((const int*)(sptr+i))[1];
((int*)(dptr+i))[0] = t0;
((int*)(dptr+i))[1] = t1;
t0 = ~((const int*)(sptr+i))[2];
t1 = ~((const int*)(sptr+i))[3];
((int*)(dptr+i))[2] = t0;
((int*)(dptr+i))[3] = t1;
}
for( ; i <= size.width - 4; i += 4 )
*(int*)(dptr+i) = ~*(const int*)(sptr+i);
}
for( ; i < size.width; i++ )
{
dptr[i] = (uchar)(~sptr[i]);
}
}
}
/****************************************************************************************\
* add/subtract *
\****************************************************************************************/
template<> inline uchar OpAdd<uchar>::operator ()(uchar a, uchar b) const
{ return CV_FAST_CAST_8U(a + b); }
template<> inline uchar OpSub<uchar>::operator ()(uchar a, uchar b) const
{ return CV_FAST_CAST_8U(a - b); }
static BinaryFunc addTab[] =
{
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
binaryOpC1_<OpAdd<uchar>, ippAdd8u>,
0,
binaryOpC1_<OpAdd<ushort>, ippAdd16u>,
binaryOpC1_<OpAdd<short>, ippAdd16s>,
binaryOpC1_<OpAdd<int>, ippAdd32s>,
binaryOpC1_<OpAdd<float>, ippAdd32f>,
binaryOpC1_<OpAdd<double>, ippAdd64f>,
0
#else
binaryOpC1_<OpAdd<uchar>, VAdd8u>,
0,
binaryOpC1_<OpAdd<ushort>, VAdd16u>,
binaryOpC1_<OpAdd<short>, VAdd16s>,
binaryOpC1_<OpAdd<int>, NoVec>,
binaryOpC1_<OpAdd<float>, VAdd32f>,
binaryOpC1_<OpAdd<double>, NoVec>,
0
#endif
};
static BinaryFunc subTab[] =
{
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
binaryOpC1_<OpSub<uchar>, ippSub8u>,
0,
binaryOpC1_<OpSub<ushort>, ippSub16u>,
binaryOpC1_<OpSub<short>, ippSub16s>,
binaryOpC1_<OpSub<int>, ippSub32s>,
binaryOpC1_<OpSub<float>, ippSub32f>,
binaryOpC1_<OpSub<double>, ippSub64f>,
0
#else
binaryOpC1_<OpSub<uchar>, VSub8u>,
0,
binaryOpC1_<OpSub<ushort>, VSub16u>,
binaryOpC1_<OpSub<short>, VSub16s>,
binaryOpC1_<OpSub<int>, NoVec>,
binaryOpC1_<OpSub<float>, VSub32f>,
binaryOpC1_<OpSub<double>, NoVec>,
0
#endif
};
void add( const Mat& src1, const Mat& src2, Mat& dst )
{
int type = src1.type();
BinaryFunc func = addTab[CV_MAT_DEPTH(type)];
CV_Assert( type == src2.type() && func != 0 );
if( src1.dims > 2 || src2.dims > 2 )
{
dst.create(src1.dims, src1.size, src1.type());
const Mat* arrays[] = {&src1, &src2, &dst, 0};
Mat planes[3];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func( it.planes[0], it.planes[1], it.planes[2] );
return;
}
Size size = src1.size();
CV_Assert( size == src2.size() );
dst.create( size, type );
func(src1, src2, dst);
}
void subtract( const Mat& src1, const Mat& src2, Mat& dst )
{
int type = src1.type();
BinaryFunc func = subTab[CV_MAT_DEPTH(type)];
CV_Assert( type == src2.type() && func != 0 );
if( src1.dims > 2 || src2.dims > 2 )
{
dst.create(src1.dims, src1.size, src1.type());
const Mat* arrays[] = {&src1, &src2, &dst, 0};
Mat planes[3];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func( it.planes[0], it.planes[1], it.planes[2] );
return;
}
Size size = src1.size();
CV_Assert( size == src2.size() );
dst.create( size, type );
func(src1, src2, dst);
}
void subtract(const Mat& a, const Scalar& s, Mat& c, const Mat& mask)
{
add(a, -s, c, mask);
}
void add(const Mat& src1, const Mat& src2, Mat& dst, const Mat& mask)
{
binaryMaskOp(src1, src2, dst, mask, addTab[src1.depth()] );
}
void subtract(const Mat& src1, const Mat& src2, Mat& dst, const Mat& mask)
{
binaryMaskOp(src1, src2, dst, mask, subTab[src1.depth()] );
}
void add(const Mat& src1, const Scalar& s, Mat& dst, const Mat& mask)
{
static BinarySFuncCn addSTab[] =
{
binarySOpCn_<OpAdd<uchar, int, uchar> >,
0,
binarySOpCn_<OpAdd<ushort, int, ushort> >,
binarySOpCn_<OpAdd<short, int, short> >,
binarySOpCn_<OpAdd<int> >,
binarySOpCn_<OpAdd<float> >,
binarySOpCn_<OpAdd<double> >,
0
};
int depth = src1.depth();
binarySMaskOp(src1, s, dst, mask, addSTab[depth]);
}
void subtract(const Scalar& s, const Mat& src1, Mat& dst, const Mat& mask)
{
static BinarySFuncCn rsubSTab[] =
{
binarySOpCn_<OpRSub<uchar, int, uchar> >,
0,
binarySOpCn_<OpRSub<ushort, int, ushort> >,
binarySOpCn_<OpRSub<short, int, short> >,
binarySOpCn_<OpRSub<int> >,
binarySOpCn_<OpRSub<float> >,
binarySOpCn_<OpRSub<double> >,
0
};
int depth = src1.depth();
binarySMaskOp(src1, s, dst, mask, rsubSTab[depth]);
}
/****************************************************************************************\
* multiply/divide *
\****************************************************************************************/
template<typename T, typename WT> static void
mul_( const Mat& srcmat1, const Mat& srcmat2, Mat& dstmat, double _scale )
{
const T* src1 = (const T*)srcmat1.data;
const T* src2 = (const T*)srcmat2.data;
T* dst = (T*)dstmat.data;
size_t step1 = srcmat1.step/sizeof(src1[0]);
size_t step2 = srcmat2.step/sizeof(src2[0]);
size_t step = dstmat.step/sizeof(dst[0]);
Size size = getContinuousSize( srcmat1, srcmat2, dstmat, dstmat.channels() );
if( fabs(_scale - 1.) < DBL_EPSILON )
{
for( ; size.height--; src1+=step1, src2+=step2, dst+=step )
{
int i;
for( i = 0; i <= size.width - 4; i += 4 )
{
T t0;
T t1;
t0 = saturate_cast<T>(src1[i ] * src2[i ]);
t1 = saturate_cast<T>(src1[i+1] * src2[i+1]);
dst[i ] = t0;
dst[i+1] = t1;
t0 = saturate_cast<T>(src1[i+2] * src2[i+2]);
t1 = saturate_cast<T>(src1[i+3] * src2[i+3]);
dst[i+2] = t0;
dst[i+3] = t1;
}
for( ; i < size.width; i++ )
dst[i] = saturate_cast<T>(src1[i] * src2[i]);
}
}
else
{
WT scale = (WT)_scale;
for( ; size.height--; src1+=step1, src2+=step2, dst+=step )
{
int i;
for( i = 0; i <= size.width - 4; i += 4 )
{
T t0 = saturate_cast<T>(scale*(WT)src1[i]*src2[i]);
T t1 = saturate_cast<T>(scale*(WT)src1[i+1]*src2[i+1]);
dst[i] = t0; dst[i+1] = t1;
t0 = saturate_cast<T>(scale*(WT)src1[i+2]*src2[i+2]);
t1 = saturate_cast<T>(scale*(WT)src1[i+3]*src2[i+3]);
dst[i+2] = t0; dst[i+3] = t1;
}
for( ; i < size.width; i++ )
dst[i] = saturate_cast<T>(scale*(WT)src1[i]*src2[i]);
}
}
}
typedef void (*MulDivFunc)( const Mat& src1, const Mat& src2,
Mat& dst, double scale );
void multiply(const Mat& src1, const Mat& src2, Mat& dst, double scale)
{
static MulDivFunc tab[] =
{
mul_<uchar, float>,
0,
mul_<ushort, float>,
mul_<short, float>,
mul_<int, double>,
mul_<float, float>,
mul_<double, double>,
0
};
MulDivFunc func = tab[src1.depth()];
CV_Assert( src1.type() == src2.type() && func != 0 );
if( src1.dims > 2 || src2.dims > 2 )
{
dst.create(src1.dims, src1.size, src1.type());
const Mat* arrays[] = {&src1, &src2, &dst, 0};
Mat planes[3];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func( it.planes[0], it.planes[1], it.planes[2], scale );
return;
}
CV_Assert( src1.size() == src2.size() );
dst.create( src1.size(), src1.type() );
func( src1, src2, dst, scale );
}
template<typename T> static void
div_( const Mat& srcmat1, const Mat& srcmat2, Mat& dstmat, double scale )
{
const T* src1 = (const T*)srcmat1.data;
const T* src2 = (const T*)srcmat2.data;
T* dst = (T*)dstmat.data;
size_t step1 = srcmat1.step/sizeof(src1[0]);
size_t step2 = srcmat2.step/sizeof(src2[0]);
size_t step = dstmat.step/sizeof(dst[0]);
Size size = getContinuousSize( srcmat1, srcmat2, dstmat, dstmat.channels() );
for( ; size.height--; src1+=step1, src2+=step2, dst+=step )
{
int i = 0;
for( ; i <= size.width - 4; i += 4 )
{
if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 )
{
double a = (double)src2[i] * src2[i+1];
double b = (double)src2[i+2] * src2[i+3];
double d = scale/(a * b);
b *= d;
a *= d;
T z0 = saturate_cast<T>(src2[i+1] * src1[i] * b);
T z1 = saturate_cast<T>(src2[i] * src1[i+1] * b);
T z2 = saturate_cast<T>(src2[i+3] * src1[i+2] * a);
T z3 = saturate_cast<T>(src2[i+2] * src1[i+3] * a);
dst[i] = z0; dst[i+1] = z1;
dst[i+2] = z2; dst[i+3] = z3;
}
else
{
T z0 = src2[i] != 0 ? saturate_cast<T>(src1[i]*scale/src2[i]) : 0;
T z1 = src2[i+1] != 0 ? saturate_cast<T>(src1[i+1]*scale/src2[i+1]) : 0;
T z2 = src2[i+2] != 0 ? saturate_cast<T>(src1[i+2]*scale/src2[i+2]) : 0;
T z3 = src2[i+3] != 0 ? saturate_cast<T>(src1[i+3]*scale/src2[i+3]) : 0;
dst[i] = z0; dst[i+1] = z1;
dst[i+2] = z2; dst[i+3] = z3;
}
}
for( ; i < size.width; i++ )
dst[i] = src2[i] != 0 ? saturate_cast<T>(src1[i]*scale/src2[i]) : 0;
}
}
void divide(const Mat& src1, const Mat& src2, Mat& dst, double scale)
{
static MulDivFunc tab[] =
{
div_<uchar>, 0, div_<ushort>, div_<short>,
div_<int>, div_<float>, div_<double>, 0
};
MulDivFunc func = tab[src1.depth()];
CV_Assert( src1.size() == src2.size() && src1.type() == src2.type() && func != 0 );
if( src1.dims > 2 || src2.dims > 2 )
{
dst.create(src1.dims, src1.size, src1.type());
const Mat* arrays[] = {&src1, &src2, &dst, 0};
Mat planes[3];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func( it.planes[0], it.planes[1], it.planes[2], scale );
return;
}
CV_Assert( src1.size() == src2.size() );
dst.create( src1.size(), src1.type() );
func( src1, src2, dst, scale );
}
template<typename T> static void
recip_( double scale, const Mat& srcmat2, Mat& dstmat )
{
const T* src2 = (const T*)srcmat2.data;
T* dst = (T*)dstmat.data;
size_t step2 = srcmat2.step/sizeof(src2[0]);
size_t step = dstmat.step/sizeof(dst[0]);
Size size = getContinuousSize( srcmat2, dstmat, dstmat.channels() );
for( ; size.height--; src2+=step2, dst+=step )
{
int i = 0;
for( ; i <= size.width - 4; i += 4 )
{
if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 )
{
double a = (double)src2[i] * src2[i+1];
double b = (double)src2[i+2] * src2[i+3];
double d = scale/(a * b);
b *= d;
a *= d;
T z0 = saturate_cast<T>(src2[i+1] * b);
T z1 = saturate_cast<T>(src2[i] * b);
T z2 = saturate_cast<T>(src2[i+3] * a);
T z3 = saturate_cast<T>(src2[i+2] * a);
dst[i] = z0; dst[i+1] = z1;
dst[i+2] = z2; dst[i+3] = z3;
}
else
{
T z0 = src2[i] != 0 ? saturate_cast<T>(scale/src2[i]) : 0;
T z1 = src2[i+1] != 0 ? saturate_cast<T>(scale/src2[i+1]) : 0;
T z2 = src2[i+2] != 0 ? saturate_cast<T>(scale/src2[i+2]) : 0;
T z3 = src2[i+3] != 0 ? saturate_cast<T>(scale/src2[i+3]) : 0;
dst[i] = z0; dst[i+1] = z1;
dst[i+2] = z2; dst[i+3] = z3;
}
}
for( ; i < size.width; i++ )
dst[i] = src2[i] != 0 ? saturate_cast<T>(scale/src2[i]) : 0;
}
}
typedef void (*RecipFunc)( double scale, const Mat& src, Mat& dst );
void divide(double scale, const Mat& src, Mat& dst)
{
static RecipFunc tab[] =
{
recip_<uchar>,
0,
recip_<ushort>,
recip_<short>,
recip_<int>,
recip_<float>,
recip_<double>,
0
};
RecipFunc func = tab[src.depth()];
CV_Assert( func != 0 );
if( src.dims > 2 )
{
dst.create(src.dims, src.size, src.type());
const Mat* arrays[] = {&src, &dst, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func( scale, it.planes[0], it.planes[1] );
return;
}
dst.create( src.size(), src.type() );
func( scale, src, dst );
}
/****************************************************************************************\
* addWeighted *
\****************************************************************************************/
template<typename T, typename WT> static void
addWeighted_( const Mat& srcmat1, double _alpha, const Mat& srcmat2,
double _beta, double _gamma, Mat& dstmat )
{
const T* src1 = (const T*)srcmat1.data;
const T* src2 = (const T*)srcmat2.data;
T* dst = (T*)dstmat.data;
size_t step1 = srcmat1.step/sizeof(src1[0]);
size_t step2 = srcmat2.step/sizeof(src2[0]);
size_t step = dstmat.step/sizeof(dst[0]);
Size size = getContinuousSize( srcmat1, srcmat2, dstmat, dstmat.channels() );
WT alpha = (WT)_alpha, beta = (WT)_beta, gamma = (WT)_gamma;
for( ; size.height--; src1+=step1, src2+=step2, dst+=step )
{
int i = 0;
for( ; i <= size.width - 4; i += 4 )
{
T t0 = saturate_cast<T>(src1[i]*alpha + src2[i]*beta + gamma);
T t1 = saturate_cast<T>(src1[i+1]*alpha + src2[i+1]*beta + gamma);
dst[i] = t0; dst[i+1] = t1;
t0 = saturate_cast<T>(src1[i+2]*alpha + src2[i+2]*beta + gamma);
t1 = saturate_cast<T>(src1[i+3]*alpha + src2[i+3]*beta + gamma);
dst[i+2] = t0; dst[i+3] = t1;
}
for( ; i < size.width; i++ )
dst[i] = saturate_cast<T>(src1[i]*alpha + src2[i]*beta + gamma);
}
}
static void
addWeighted8u( const Mat& srcmat1, double alpha,
const Mat& srcmat2, double beta,
double gamma, Mat& dstmat )
{
const int shift = 14;
if( srcmat1.rows*srcmat1.cols*srcmat1.channels() <= 256 ||
fabs(alpha) > 256 || fabs(beta) > 256 || fabs(gamma) > 256*256 )
{
addWeighted_<uchar, float>(srcmat1, alpha, srcmat2, beta, gamma, dstmat);
return;
}
const uchar* src1 = srcmat1.data;
const uchar* src2 = srcmat2.data;
uchar* dst = dstmat.data;
size_t step1 = srcmat1.step;
size_t step2 = srcmat2.step;
size_t step = dstmat.step;
Size size = getContinuousSize( srcmat1, srcmat2, dstmat, dstmat.channels() );
int tab1[256], tab2[256];
double t = 0;
int j, t0, t1, t2, t3;
alpha *= 1 << shift;
gamma = gamma*(1 << shift) + (1 << (shift - 1));
beta *= 1 << shift;
for( j = 0; j < 256; j++ )
{
tab1[j] = cvRound(t);
tab2[j] = cvRound(gamma);
t += alpha;
gamma += beta;
}
t0 = (tab1[0] + tab2[0]) >> shift;
t1 = (tab1[0] + tab2[255]) >> shift;
t2 = (tab1[255] + tab2[0]) >> shift;
t3 = (tab1[255] + tab2[255]) >> shift;
if( (unsigned)(t0+256) < 768 && (unsigned)(t1+256) < 768 &&
(unsigned)(t2+256) < 768 && (unsigned)(t3+256) < 768 )
{
// use faster table-based convertion back to 8u
for( ; size.height--; src1 += step1, src2 += step2, dst += step )
{
int i;
for( i = 0; i <= size.width - 4; i += 4 )
{
t0 = CV_FAST_CAST_8U((tab1[src1[i]] + tab2[src2[i]]) >> shift);
t1 = CV_FAST_CAST_8U((tab1[src1[i+1]] + tab2[src2[i+1]]) >> shift);
dst[i] = (uchar)t0;
dst[i+1] = (uchar)t1;
t0 = CV_FAST_CAST_8U((tab1[src1[i+2]] + tab2[src2[i+2]]) >> shift);
t1 = CV_FAST_CAST_8U((tab1[src1[i+3]] + tab2[src2[i+3]]) >> shift);
dst[i+2] = (uchar)t0;
dst[i+3] = (uchar)t1;
}
for( ; i < size.width; i++ )
{
t0 = CV_FAST_CAST_8U((tab1[src1[i]] + tab2[src2[i]]) >> shift);
dst[i] = (uchar)t0;
}
}
}
else
{
// use universal macro for convertion back to 8u
for( ; size.height--; src1 += step1, src2 += step2, dst += step )
{
int i;
for( i = 0; i <= size.width - 4; i += 4 )
{
t0 = (tab1[src1[i]] + tab2[src2[i]]) >> shift;
t1 = (tab1[src1[i+1]] + tab2[src2[i+1]]) >> shift;
dst[i] = CV_CAST_8U( t0 );
dst[i+1] = CV_CAST_8U( t1 );
t0 = (tab1[src1[i+2]] + tab2[src2[i+2]]) >> shift;
t1 = (tab1[src1[i+3]] + tab2[src2[i+3]]) >> shift;
dst[i+2] = CV_CAST_8U( t0 );
dst[i+3] = CV_CAST_8U( t1 );
}
for( ; i < size.width; i++ )
{
t0 = (tab1[src1[i]] + tab2[src2[i]]) >> shift;
dst[i] = CV_CAST_8U( t0 );
}
}
}
}
typedef void (*AddWeightedFunc)( const Mat& src1, double alpha, const Mat& src2,
double beta, double gamma, Mat& dst );
void addWeighted( const Mat& src1, double alpha, const Mat& src2,
double beta, double gamma, Mat& dst )
{
static AddWeightedFunc tab[] =
{
addWeighted8u,
0,
addWeighted_<ushort, float>,
addWeighted_<short, float>,
addWeighted_<int, double>,
addWeighted_<float, float>,
addWeighted_<double, double>,
0
};
AddWeightedFunc func = tab[src1.depth()];
CV_Assert( src1.type() == src2.type() && func != 0 );
if( src1.dims > 2 || src2.dims > 2 )
{
dst.create(src1.dims, src1.size, src1.type());
const Mat* arrays[] = {&src1, &src2, &dst, 0};
Mat planes[3];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func( it.planes[0], alpha, it.planes[1], beta, gamma, it.planes[2] );
return;
}
CV_Assert( src1.size() == src2.size() );
dst.create( src1.size(), src1.type() );
func( src1, alpha, src2, beta, gamma, dst );
}
/****************************************************************************************\
* absdiff *
\****************************************************************************************/
template<typename T> struct OpAbsDiff
{
typedef T type1;
typedef T type2;
typedef T rtype;
T operator()(T a, T b) { return (T)std::abs(a - b); }
};
template<> inline short OpAbsDiff<short>::operator ()(short a, short b)
{ return saturate_cast<short>(std::abs(a - b)); }
template<typename T, typename WT=T> struct OpAbsDiffS
{
typedef T type1;
typedef WT type2;
typedef T rtype;
T operator()(T a, WT b) { return saturate_cast<T>(std::abs(a - b)); }
};
void absdiff( const Mat& src1, const Mat& src2, Mat& dst )
{
static BinaryFunc tab[] =
{
binaryOpC1_<OpAbsDiff<uchar>,VAbsDiff8u>,
0,
binaryOpC1_<OpAbsDiff<ushort>,VAbsDiff16u>,
binaryOpC1_<OpAbsDiff<short>,VAbsDiff16s>,
binaryOpC1_<OpAbsDiff<int>,NoVec>,
binaryOpC1_<OpAbsDiff<float>,VAbsDiff32f>,
binaryOpC1_<OpAbsDiff<double>,NoVec>,
0
};
binaryOp(src1, src2, dst, tab[src1.depth()]);
}
void absdiff( const Mat& src1, const Scalar& s, Mat& dst )
{
static BinarySFuncCn tab[] =
{
binarySOpCn_<OpAbsDiffS<uchar, int> >,
0,
binarySOpCn_<OpAbsDiffS<ushort, int> >,
binarySOpCn_<OpAbsDiffS<short, int> >,
binarySOpCn_<OpAbsDiffS<int> >,
binarySOpCn_<OpAbsDiffS<float> >,
binarySOpCn_<OpAbsDiffS<double> >,
0
};
BinarySFuncCn func = tab[src1.depth()];
CV_Assert(src1.channels() <= 4 && func != 0);
if( src1.dims > 2 )
{
dst.create(src1.dims, src1.size, src1.type());
const Mat* arrays[] = {&src1, &dst, 0};
Mat planes[3];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func( it.planes[0], it.planes[1], s );
return;
}
dst.create(src1.size(), src1.type());
func( src1, dst, s );
}
/****************************************************************************************\
* inRange[S] *
\****************************************************************************************/
template<typename T, typename WT> struct InRangeC1
{
typedef T xtype;
typedef WT btype;
uchar operator()(xtype x, btype a, btype b) const
{ return (uchar)-(a <= x && x < b); }
};
template<typename T, typename WT> struct InRangeC2
{
typedef Vec<T,2> xtype;
typedef Vec<WT,2> btype;
uchar operator()(const xtype& x, const btype& a, const btype& b) const
{
return (uchar)-(a[0] <= x[0] && x[0] < b[0] &&
a[1] <= x[1] && x[1] < b[1]);
}
};
template<typename T, typename WT> struct InRangeC3
{
typedef Vec<T,3> xtype;
typedef Vec<WT,3> btype;
uchar operator()(const xtype& x, const btype& a, const btype& b) const
{
return (uchar)-(a[0] <= x[0] && x[0] < b[0] &&
a[1] <= x[1] && x[1] < b[1] &&
a[2] <= x[2] && x[2] < b[2]);
}
};
template<typename T, typename WT> struct InRangeC4
{
typedef Vec<T,4> xtype;
typedef Vec<WT,4> btype;
uchar operator()(const xtype& x, const btype& a, const btype& b) const
{
return (uchar)-(a[0] <= x[0] && x[0] < b[0] &&
a[1] <= x[1] && x[1] < b[1] &&
a[2] <= x[2] && x[2] < b[2] &&
a[3] <= x[3] && x[3] < b[3]);
}
};
template<class Op> static void
inRange_( const Mat& srcmat1, const Mat& srcmat2, const Mat& srcmat3, Mat& dstmat )
{
Op op;
uchar* dst = dstmat.data;
size_t dstep = dstmat.step;
Size size = getContinuousSize( srcmat1, srcmat2, srcmat3, dstmat );
for( int y = 0; y < size.height; y++, dst += dstep )
{
const typename Op::xtype* src1 = (const typename Op::xtype*)(srcmat1.data + srcmat1.step*y);
const typename Op::xtype* src2 = (const typename Op::xtype*)(srcmat2.data + srcmat2.step*y);
const typename Op::xtype* src3 = (const typename Op::xtype*)(srcmat3.data + srcmat3.step*y);
for( int x = 0; x < size.width; x++ )
dst[x] = op( src1[x], src2[x], src3[x] );
}
}
template<class Op> static void
inRangeS_( const Mat& srcmat1, const Scalar& _a, const Scalar& _b, Mat& dstmat )
{
Op op;
typedef typename Op::btype WT;
typedef typename DataType<WT>::channel_type WT1;
WT a, b;
uchar* dst = dstmat.data;
size_t dstep = dstmat.step;
Size size = getContinuousSize( srcmat1, dstmat );
int cn = srcmat1.channels();
scalarToRawData(_a, &a, CV_MAKETYPE(DataType<WT>::depth, cn));
scalarToRawData(_b, &b, CV_MAKETYPE(DataType<WT>::depth, cn));
for( int y = 0; y < size.height; y++, dst += dstep )
{
const typename Op::xtype* src1 = (const typename Op::xtype*)(srcmat1.data + srcmat1.step*y);
for( int x = 0; x < size.width; x++ )
dst[x] = op( src1[x], a, b );
}
}
typedef void (*InRangeFunc)( const Mat& src1, const Mat& src2, const Mat& src3, Mat& dst );
typedef void (*InRangeSFunc)( const Mat& src1, const Scalar& a, const Scalar& b, Mat& dst );
void inRange(const Mat& src, const Mat& lowerb,
const Mat& upperb, Mat& dst)
{
static InRangeFunc tab[] =
{
inRange_<InRangeC1<uchar, uchar> >,
0,
inRange_<InRangeC1<ushort, ushort> >,
inRange_<InRangeC1<short, short> >,
inRange_<InRangeC1<int, int> >,
inRange_<InRangeC1<float, float> >,
inRange_<InRangeC1<double, double> >,
0,
inRange_<InRangeC2<uchar, uchar> >,
0,
inRange_<InRangeC2<ushort, ushort> >,
inRange_<InRangeC2<short, short> >,
inRange_<InRangeC2<int, int> >,
inRange_<InRangeC2<float, float> >,
inRange_<InRangeC2<double, double> >,
0,
inRange_<InRangeC3<uchar, uchar> >,
0,
inRange_<InRangeC3<ushort, ushort> >,
inRange_<InRangeC3<short, short> >,
inRange_<InRangeC3<int, int> >,
inRange_<InRangeC3<float, float> >,
inRange_<InRangeC3<double, double> >,
0,
inRange_<InRangeC4<uchar, uchar> >,
0,
inRange_<InRangeC4<ushort, ushort> >,
inRange_<InRangeC4<short, short> >,
inRange_<InRangeC4<int, int> >,
inRange_<InRangeC4<float, float> >,
inRange_<InRangeC4<double, double> >,
0
};
CV_Assert( src.type() == lowerb.type() && src.type() == upperb.type() && src.channels() <= 4 );
InRangeFunc func = tab[src.type()];
CV_Assert( func != 0 );
if( src.dims > 2 || lowerb.dims > 2 || upperb.dims > 2 )
{
dst.create(src.dims, src.size, CV_8U);
const Mat* arrays[] = {&src, &lowerb, &upperb, &dst, 0};
Mat planes[4];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func( it.planes[0], it.planes[1], it.planes[2], it.planes[3] );
return;
}
CV_Assert( src.size() == lowerb.size() && src.size() == upperb.size() );
dst.create(src.size(), CV_8U);
func( src, lowerb, upperb, dst );
}
void inRange(const Mat& src, const Scalar& lowerb,
const Scalar& upperb, Mat& dst)
{
static InRangeSFunc tab[] =
{
inRangeS_<InRangeC1<uchar, int> >,
0,
inRangeS_<InRangeC1<ushort, int> >,
inRangeS_<InRangeC1<short, int> >,
inRangeS_<InRangeC1<int, int> >,
inRangeS_<InRangeC1<float, float> >,
inRangeS_<InRangeC1<double, double> >,
0,
inRangeS_<InRangeC2<uchar, int> >,
0,
inRangeS_<InRangeC2<ushort, int> >,
inRangeS_<InRangeC2<short, int> >,
inRangeS_<InRangeC2<int, int> >,
inRangeS_<InRangeC2<float, float> >,
inRangeS_<InRangeC2<double, double> >,
0,
inRangeS_<InRangeC3<uchar, int> >,
0,
inRangeS_<InRangeC3<ushort, int> >,
inRangeS_<InRangeC3<short, int> >,
inRangeS_<InRangeC3<int, int> >,
inRangeS_<InRangeC3<float, float> >,
inRangeS_<InRangeC3<double, double> >,
0,
inRangeS_<InRangeC4<uchar, int> >,
0,
inRangeS_<InRangeC4<ushort, int> >,
inRangeS_<InRangeC4<short, int> >,
inRangeS_<InRangeC4<int, int> >,
inRangeS_<InRangeC4<float, float> >,
inRangeS_<InRangeC4<double, double> >,
0
};
CV_Assert( src.channels() <= 4 );
InRangeSFunc func = tab[src.type()];
CV_Assert( func != 0 );
if( src.dims > 2 )
{
dst.create(src.dims, src.size, CV_8U);
const Mat* arrays[] = {&src, &dst, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func( it.planes[0], lowerb, upperb, it.planes[1] );
return;
}
dst.create(src.size(), CV_8U);
func( src, lowerb, upperb, dst );
}
/****************************************************************************************\
* compare *
\****************************************************************************************/
template<typename T, typename WT=T> struct CmpEQ
{
typedef T type1;
typedef WT type2;
typedef uchar rtype;
uchar operator()(T a, WT b) const { return (uchar)-(a == b); }
};
template<typename T, typename WT=T> struct CmpGT
{
typedef T type1;
typedef WT type2;
typedef uchar rtype;
uchar operator()(T a, WT b) const { return (uchar)-(a > b); }
};
template<typename T, typename WT=T> struct CmpGE
{
typedef T type1;
typedef WT type2;
typedef uchar rtype;
uchar operator()(T a, WT b) const { return (uchar)-(a >= b); }
};
void compare( const Mat& src1, const Mat& src2, Mat& dst, int cmpOp )
{
static BinaryFunc tab[][8] =
{
{
binaryOpC1_<CmpGT<uchar>,VCmpGT8u>,
0,
binaryOpC1_<CmpGT<ushort>,NoVec>,
binaryOpC1_<CmpGT<short>,NoVec>,
binaryOpC1_<CmpGT<int>,NoVec>,
binaryOpC1_<CmpGT<float>,NoVec>,
binaryOpC1_<CmpGT<double>,NoVec>,
0
},
{
binaryOpC1_<CmpEQ<uchar>,VCmpEQ8u>,
0,
binaryOpC1_<CmpEQ<ushort>,NoVec>,
binaryOpC1_<CmpEQ<ushort>,NoVec>, // same function as for ushort's
binaryOpC1_<CmpEQ<int>,NoVec>,
binaryOpC1_<CmpEQ<float>,NoVec>,
binaryOpC1_<CmpEQ<double>,NoVec>,
0
},
};
CV_Assert(src1.channels() == 1);
int depth = src1.depth();
const Mat *psrc1 = &src1, *psrc2 = &src2;
bool invflag = false;
switch( cmpOp )
{
case CMP_GT:
case CMP_EQ:
break;
case CMP_GE:
std::swap( psrc1, psrc2 );
invflag = true;
break;
case CMP_LT:
std::swap( psrc1, psrc2 );
break;
case CMP_LE:
invflag = true;
break;
case CMP_NE:
cmpOp = CMP_EQ;
invflag = true;
break;
default:
CV_Error(CV_StsBadArg, "Unknown comparison method");
}
BinaryFunc func = tab[cmpOp == CMP_EQ][depth];
binaryOp(*psrc1, *psrc2, dst, func, CV_8U);
if( invflag )
bitwise_not(dst, dst);
}
void compare( const Mat& src1, double value, Mat& dst, int cmpOp )
{
static BinarySFuncC1 tab[][8] =
{
{
binarySOpC1_<CmpEQ<uchar, int> >,
0,
binarySOpC1_<CmpEQ<ushort, int> >,
binarySOpC1_<CmpEQ<short, int> >,
binarySOpC1_<CmpEQ<int> >,
binarySOpC1_<CmpEQ<float> >,
binarySOpC1_<CmpEQ<double> >,
0
},
{
binarySOpC1_<CmpGT<uchar, int> >,
0,
binarySOpC1_<CmpGT<ushort, int> >,
binarySOpC1_<CmpGT<short, int> >,
binarySOpC1_<CmpGT<int> >,
binarySOpC1_<CmpGT<float> >,
binarySOpC1_<CmpGT<double> >,
0
},
{
binarySOpC1_<CmpGE<uchar, int> >,
0,
binarySOpC1_<CmpGE<ushort, int> >,
binarySOpC1_<CmpGE<short, int> >,
binarySOpC1_<CmpGE<int> >,
binarySOpC1_<CmpGE<float> >,
binarySOpC1_<CmpGE<double> >,
0
},
};
int depth = src1.depth();
bool invflag = false;
switch( cmpOp )
{
case CMP_GT:
case CMP_EQ:
case CMP_GE:
break;
case CMP_LT:
invflag = true;
cmpOp = CMP_GE;
break;
case CMP_LE:
invflag = true;
cmpOp = CMP_GT;
break;
case CMP_NE:
invflag = true;
cmpOp = CMP_EQ;
break;
default:
CV_Error(CV_StsBadArg, "Unknown comparison method");
}
BinarySFuncC1 func = tab[cmpOp == CMP_EQ ? 0 : cmpOp == CMP_GT ? 1 : 2][depth];
CV_Assert( func != 0 );
if( src1.dims > 2 )
{
dst.create(src1.dims, src1.size, CV_8UC(src1.channels()));
const Mat* arrays[] = {&src1, &dst, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
{
func( it.planes[0], it.planes[1], value );
if( invflag )
bitwise_not(it.planes[2], it.planes[2]);
}
return;
}
dst.create(src1.rows, src1.cols, CV_8UC(src1.channels()));
func( src1, dst, value );
if( invflag )
bitwise_not(dst, dst);
}
/****************************************************************************************\
* min/max *
\****************************************************************************************/
template<typename T> struct MinOp
{
typedef T type1;
typedef T type2;
typedef T rtype;
T operator ()(T a, T b) const { return std::min(a, b); }
};
template<typename T> struct MaxOp
{
typedef T type1;
typedef T type2;
typedef T rtype;
T operator ()(T a, T b) const { return std::max(a, b); }
};
template<> inline uchar MinOp<uchar>::operator ()(uchar a, uchar b) const { return CV_MIN_8U(a, b); }
template<> inline uchar MaxOp<uchar>::operator ()(uchar a, uchar b) const { return CV_MAX_8U(a, b); }
void min( const Mat& src1, const Mat& src2, Mat& dst )
{
static BinaryFunc tab[] =
{
binaryOpC1_<MinOp<uchar>,VMin8u>,
0,
binaryOpC1_<MinOp<ushort>,VMin16u>,
binaryOpC1_<MinOp<short>,VMin16s>,
binaryOpC1_<MinOp<int>,NoVec>,
binaryOpC1_<MinOp<float>,VMin32f>,
binaryOpC1_<MinOp<double>,NoVec>,
0
};
binaryOp(src1, src2, dst, tab[src1.depth()]);
}
void max( const Mat& src1, const Mat& src2, Mat& dst )
{
static BinaryFunc tab[] =
{
binaryOpC1_<MaxOp<uchar>,VMax8u>,
0,
binaryOpC1_<MaxOp<ushort>,VMax16u>,
binaryOpC1_<MaxOp<short>,VMax16s>,
binaryOpC1_<MaxOp<int>,NoVec>,
binaryOpC1_<MaxOp<float>,VMax32f>,
binaryOpC1_<MaxOp<double>,NoVec>,
0
};
binaryOp(src1, src2, dst, tab[src1.depth()]);
}
void min( const Mat& src1, double value, Mat& dst )
{
static BinarySFuncC1 tab[] =
{
binarySOpC1_<MinOp<uchar> >,
0,
binarySOpC1_<MinOp<ushort> >,
binarySOpC1_<MinOp<short> >,
binarySOpC1_<MinOp<int> >,
binarySOpC1_<MinOp<float> >,
binarySOpC1_<MinOp<double> >,
0
};
BinarySFuncC1 func = tab[src1.depth()];
CV_Assert(func != 0);
if( src1.dims > 2 )
{
dst.create(src1.dims, src1.size, src1.type());
const Mat* arrays[] = {&src1, &dst, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func( it.planes[0], it.planes[1], value );
return;
}
dst.create(src1.size(), src1.type());
return func( src1, dst, value );
}
void max( const Mat& src1, double value, Mat& dst )
{
static BinarySFuncC1 tab[] =
{
binarySOpC1_<MaxOp<uchar> >,
0,
binarySOpC1_<MaxOp<ushort> >,
binarySOpC1_<MaxOp<short> >,
binarySOpC1_<MaxOp<int> >,
binarySOpC1_<MaxOp<float> >,
binarySOpC1_<MaxOp<double> >,
0
};
BinarySFuncC1 func = tab[src1.depth()];
CV_Assert(func != 0);
if( src1.dims > 2 )
{
dst.create(src1.dims, src1.size, src1.type());
const Mat* arrays[] = {&src1, &dst, 0};
Mat planes[2];
NAryMatIterator it(arrays, planes);
for( int i = 0; i < it.nplanes; i++, ++it )
func( it.planes[0], it.planes[1], value );
return;
}
dst.create(src1.size(), src1.type());
return func( src1, dst, value );
}
} // namespace cv
/****************************************************************************************\
* Earlier API: cvAdd etc. *
\****************************************************************************************/
CV_IMPL void
cvNot( const CvArr* srcarr, CvArr* dstarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert( src.size == dst.size && src.type() == dst.type() );
cv::bitwise_not( src, dst );
}
CV_IMPL void
cvAnd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
dst = cv::cvarrToMat(dstarr), mask;
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::bitwise_and( src1, src2, dst, mask );
}
CV_IMPL void
cvOr( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
dst = cv::cvarrToMat(dstarr), mask;
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::bitwise_or( src1, src2, dst, mask );
}
CV_IMPL void
cvXor( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
dst = cv::cvarrToMat(dstarr), mask;
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::bitwise_xor( src1, src2, dst, mask );
}
CV_IMPL void
cvAndS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
CV_Assert( src.size == dst.size && src.type() == dst.type() );
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::bitwise_and( src, s, dst, mask );
}
CV_IMPL void
cvOrS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
CV_Assert( src.size == dst.size && src.type() == dst.type() );
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::bitwise_or( src, s, dst, mask );
}
CV_IMPL void
cvXorS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
CV_Assert( src.size == dst.size && src.type() == dst.type() );
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::bitwise_xor( src, s, dst, mask );
}
CV_IMPL void cvAdd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
dst = cv::cvarrToMat(dstarr), mask;
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::add( src1, src2, dst, mask );
}
CV_IMPL void cvSub( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
dst = cv::cvarrToMat(dstarr), mask;
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::subtract( src1, src2, dst, mask );
}
CV_IMPL void cvAddS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1),
dst = cv::cvarrToMat(dstarr), mask;
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::add( src1, value, dst, mask );
}
CV_IMPL void cvSubRS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1),
dst = cv::cvarrToMat(dstarr), mask;
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
if( maskarr )
mask = cv::cvarrToMat(maskarr);
cv::subtract( value, src1, dst, mask );
}
CV_IMPL void cvMul( const CvArr* srcarr1, const CvArr* srcarr2,
CvArr* dstarr, double scale )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
cv::multiply( src1, src2, dst, scale );
}
CV_IMPL void cvDiv( const CvArr* srcarr1, const CvArr* srcarr2,
CvArr* dstarr, double scale )
{
cv::Mat src2 = cv::cvarrToMat(srcarr2),
dst = cv::cvarrToMat(dstarr), mask;
CV_Assert( src2.size == dst.size && src2.type() == dst.type() );
if( srcarr1 )
cv::divide( cv::cvarrToMat(srcarr1), src2, dst, scale );
else
cv::divide( scale, src2, dst );
}
CV_IMPL void
cvAddWeighted( const CvArr* srcarr1, double alpha,
const CvArr* srcarr2, double beta,
double gamma, CvArr* dstarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
cv::addWeighted( src1, alpha, src2, beta, gamma, dst );
}
CV_IMPL void
cvAbsDiff( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
cv::absdiff( src1, cv::cvarrToMat(srcarr2), dst );
}
CV_IMPL void
cvAbsDiffS( const CvArr* srcarr1, CvArr* dstarr, CvScalar scalar )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
cv::absdiff( src1, scalar, dst );
}
CV_IMPL void
cvInRange( const void* srcarr1, const void* srcarr2,
const void* srcarr3, void* dstarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
cv::inRange( src1, cv::cvarrToMat(srcarr2), cv::cvarrToMat(srcarr3), dst );
}
CV_IMPL void
cvInRangeS( const void* srcarr1, CvScalar lowerb, CvScalar upperb, void* dstarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
cv::inRange( src1, lowerb, upperb, dst );
}
CV_IMPL void
cvCmp( const void* srcarr1, const void* srcarr2, void* dstarr, int cmp_op )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
cv::compare( src1, cv::cvarrToMat(srcarr2), dst, cmp_op );
}
CV_IMPL void
cvCmpS( const void* srcarr1, double value, void* dstarr, int cmp_op )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
cv::compare( src1, value, dst, cmp_op );
}
CV_IMPL void
cvMin( const void* srcarr1, const void* srcarr2, void* dstarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
cv::min( src1, cv::cvarrToMat(srcarr2), dst );
}
CV_IMPL void
cvMax( const void* srcarr1, const void* srcarr2, void* dstarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
cv::max( src1, cv::cvarrToMat(srcarr2), dst );
}
CV_IMPL void
cvMinS( const void* srcarr1, double value, void* dstarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
cv::min( src1, value, dst );
}
CV_IMPL void
cvMaxS( const void* srcarr1, double value, void* dstarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
cv::max( src1, value, dst );
}
/* End of file. */