Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

272 lines
9.4 KiB

#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include "common.hpp"
using namespace cv;
using namespace std;
using namespace dnn;
const string param_keys =
"{ help h | | Print help message. }"
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
"{ device | 0 | camera device number. }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }"
"{ classes | | Optional path to a text file with names of classes. }"
"{ colors | | Optional path to a text file with colors for an every class. "
"Every color is represented with three values from 0 to 255 in BGR channels order. }";
const string backend_keys = format(
"{ backend | 0 | Choose one of computation backends: "
"%d: automatically (by default), "
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"%d: OpenCV implementation, "
"%d: VKCOM, "
"%d: CUDA }",
DNN_BACKEND_DEFAULT, DNN_BACKEND_INFERENCE_ENGINE, DNN_BACKEND_OPENCV, DNN_BACKEND_VKCOM, DNN_BACKEND_CUDA);
const string target_keys = format(
"{ target | 0 | Choose one of target computation devices: "
"%d: CPU target (by default), "
"%d: OpenCL, "
"%d: OpenCL fp16 (half-float precision), "
"%d: VPU, "
"%d: Vulkan, "
"%d: CUDA, "
"%d: CUDA fp16 (half-float preprocess) }",
DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16, DNN_TARGET_MYRIAD, DNN_TARGET_VULKAN, DNN_TARGET_CUDA, DNN_TARGET_CUDA_FP16);
string keys = param_keys + backend_keys + target_keys;
vector<string> classes;
vector<Vec3b> colors;
void showLegend();
void colorizeSegmentation(const Mat &score, Mat &segm);
int main(int argc, char **argv)
{
CommandLineParser parser(argc, argv, keys);
const string modelName = parser.get<String>("@alias");
const string zooFile = parser.get<String>("zoo");
keys += genPreprocArguments(modelName, zooFile);
parser = CommandLineParser(argc, argv, keys);
parser.about("Use this script to run semantic segmentation deep learning networks using OpenCV.");
if (argc == 1 || parser.has("help"))
{
parser.printMessage();
return 0;
}
float scale = parser.get<float>("scale");
Scalar mean = parser.get<Scalar>("mean");
bool swapRB = parser.get<bool>("rgb");
int inpWidth = parser.get<int>("width");
int inpHeight = parser.get<int>("height");
String model = findFile(parser.get<String>("model"));
int backendId = parser.get<int>("backend");
int targetId = parser.get<int>("target");
// Open file with classes names.
if (parser.has("classes"))
{
string file = parser.get<String>("classes");
ifstream ifs(file.c_str());
if (!ifs.is_open())
CV_Error(Error::StsError, "File " + file + " not found");
string line;
while (getline(ifs, line))
{
classes.push_back(line);
}
}
// Open file with colors.
if (parser.has("colors"))
{
string file = parser.get<String>("colors");
ifstream ifs(file.c_str());
if (!ifs.is_open())
CV_Error(Error::StsError, "File " + file + " not found");
string line;
while (getline(ifs, line))
{
istringstream colorStr(line.c_str());
Vec3b color;
for (int i = 0; i < 3 && !colorStr.eof(); ++i)
colorStr >> color[i];
colors.push_back(color);
}
}
if (!parser.check())
{
parser.printErrors();
return 1;
}
CV_Assert(!model.empty());
//! [Read and initialize network]
Net net = readNetFromONNX(model);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
//! [Read and initialize network]
// Create a window
static const string kWinName = "Deep learning semantic segmentation in OpenCV";
namedWindow(kWinName, WINDOW_NORMAL);
//! [Open a video file or an image file or a camera stream]
VideoCapture cap;
if (parser.has("input"))
cap.open(findFile(parser.get<String>("input")));
else
cap.open(parser.get<int>("device"));
//! [Open a video file or an image file or a camera stream]
// Process frames.
Mat frame, blob;
while (waitKey(1) < 0)
{
cap >> frame;
if (frame.empty())
{
waitKey();
break;
}
imshow("Original Image", frame);
//! [Create a 4D blob from a frame]
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false);
//! [Set input blob]
net.setInput(blob);
//! [Make forward pass]
Mat score = net.forward();
if (modelName == "u2netp")
{
Mat mask, thresholded_mask, foreground_overlay, background_overlay, foreground_segmented;
mask = cv::Mat(score.size[2], score.size[3], CV_32F, score.ptr<float>(0, 0));
mask.convertTo(mask, CV_8U, 255);
threshold(mask, thresholded_mask, 0, 255, THRESH_BINARY + THRESH_OTSU);
resize(thresholded_mask, thresholded_mask, Size(frame.cols, frame.rows), 0, 0, INTER_AREA);
// Create overlays for foreground and background
foreground_overlay = Mat::zeros(frame.size(), frame.type());
background_overlay = Mat::zeros(frame.size(), frame.type());
// Set foreground (object) to red and background to blue
foreground_overlay.setTo(Scalar(0, 0, 255), thresholded_mask);
Mat inverted_mask;
bitwise_not(thresholded_mask, inverted_mask);
background_overlay.setTo(Scalar(255, 0, 0), inverted_mask);
// Blend the overlays with the original frame
addWeighted(frame, 1, foreground_overlay, 0.5, 0, foreground_segmented);
addWeighted(foreground_segmented, 1, background_overlay, 0.5, 0, frame);
}
else
{
Mat segm;
colorizeSegmentation(score, segm);
resize(segm, segm, frame.size(), 0, 0, INTER_NEAREST);
addWeighted(frame, 0.1, segm, 0.9, 0.0, frame);
}
// Put efficiency information.
vector<double> layersTimes;
double freq = getTickFrequency() / 1000;
double t = net.getPerfProfile(layersTimes) / freq;
string label = format("Inference time: %.2f ms", t);
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
imshow(kWinName, frame);
if (!classes.empty())
showLegend();
}
return 0;
}
void colorizeSegmentation(const Mat &score, Mat &segm)
{
const int rows = score.size[2];
const int cols = score.size[3];
const int chns = score.size[1];
if (colors.empty())
{
// Generate colors.
colors.push_back(Vec3b());
for (int i = 1; i < chns; ++i)
{
Vec3b color;
for (int j = 0; j < 3; ++j)
color[j] = (colors[i - 1][j] + rand() % 256) / 2;
colors.push_back(color);
}
}
else if (chns != (int)colors.size())
{
CV_Error(Error::StsError, format("Number of output classes does not match "
"number of colors (%d != %zu)",
chns, colors.size()));
}
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1);
Mat maxVal(rows, cols, CV_32FC1, score.data);
for (int ch = 1; ch < chns; ch++)
{
for (int row = 0; row < rows; row++)
{
const float *ptrScore = score.ptr<float>(0, ch, row);
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row);
float *ptrMaxVal = maxVal.ptr<float>(row);
for (int col = 0; col < cols; col++)
{
if (ptrScore[col] > ptrMaxVal[col])
{
ptrMaxVal[col] = ptrScore[col];
ptrMaxCl[col] = (uchar)ch;
}
}
}
}
segm.create(rows, cols, CV_8UC3);
for (int row = 0; row < rows; row++)
{
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
Vec3b *ptrSegm = segm.ptr<Vec3b>(row);
for (int col = 0; col < cols; col++)
{
ptrSegm[col] = colors[ptrMaxCl[col]];
}
}
}
void showLegend()
{
static const int kBlockHeight = 30;
static Mat legend;
if (legend.empty())
{
const int numClasses = (int)classes.size();
if ((int)colors.size() != numClasses)
{
CV_Error(Error::StsError, format("Number of output classes does not match "
"number of labels (%zu != %zu)",
colors.size(), classes.size()));
}
legend.create(kBlockHeight * numClasses, 200, CV_8UC3);
for (int i = 0; i < numClasses; i++)
{
Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight);
block.setTo(colors[i]);
putText(block, classes[i], Point(0, kBlockHeight / 2), FONT_HERSHEY_SIMPLEX, 0.5, Vec3b(255, 255, 255));
}
namedWindow("Legend", WINDOW_NORMAL);
imshow("Legend", legend);
}
}