|
|
|
#include "opencv2/core/core_c.h"
|
|
|
|
#include "opencv2/ml/ml.hpp"
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
void help()
|
|
|
|
{
|
|
|
|
printf("\nThis program demonstrated the use of OpenCV's decision tree function for learning and predicting data\n"
|
|
|
|
"Usage :\n"
|
|
|
|
"./mushroom <path to agaricus-lepiota.data>\n"
|
|
|
|
"\n"
|
|
|
|
"The sample demonstrates how to build a decision tree for classifying mushrooms.\n"
|
|
|
|
"It uses the sample base agaricus-lepiota.data from UCI Repository, here is the link:\n"
|
|
|
|
"\n"
|
|
|
|
"Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).\n"
|
|
|
|
"UCI Repository of machine learning databases\n"
|
|
|
|
"[http://www.ics.uci.edu/~mlearn/MLRepository.html].\n"
|
|
|
|
"Irvine, CA: University of California, Department of Information and Computer Science.\n"
|
|
|
|
"\n"
|
|
|
|
"// loads the mushroom database, which is a text file, containing\n"
|
|
|
|
"// one training sample per row, all the input variables and the output variable are categorical,\n"
|
|
|
|
"// the values are encoded by characters.\n\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
int mushroom_read_database( const char* filename, CvMat** data, CvMat** missing, CvMat** responses )
|
|
|
|
{
|
|
|
|
const int M = 1024;
|
|
|
|
FILE* f = fopen( filename, "rt" );
|
|
|
|
CvMemStorage* storage;
|
|
|
|
CvSeq* seq;
|
|
|
|
char buf[M+2], *ptr;
|
|
|
|
float* el_ptr;
|
|
|
|
CvSeqReader reader;
|
|
|
|
int i, j, var_count = 0;
|
|
|
|
|
|
|
|
if( !f )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
// read the first line and determine the number of variables
|
|
|
|
if( !fgets( buf, M, f ))
|
|
|
|
{
|
|
|
|
fclose(f);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( ptr = buf; *ptr != '\0'; ptr++ )
|
|
|
|
var_count += *ptr == ',';
|
|
|
|
assert( ptr - buf == (var_count+1)*2 );
|
|
|
|
|
|
|
|
// create temporary memory storage to store the whole database
|
|
|
|
el_ptr = new float[var_count+1];
|
|
|
|
storage = cvCreateMemStorage();
|
|
|
|
seq = cvCreateSeq( 0, sizeof(*seq), (var_count+1)*sizeof(float), storage );
|
|
|
|
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
for( i = 0; i <= var_count; i++ )
|
|
|
|
{
|
|
|
|
int c = buf[i*2];
|
|
|
|
el_ptr[i] = c == '?' ? -1.f : (float)c;
|
|
|
|
}
|
|
|
|
if( i != var_count+1 )
|
|
|
|
break;
|
|
|
|
cvSeqPush( seq, el_ptr );
|
|
|
|
if( !fgets( buf, M, f ) || !strchr( buf, ',' ) )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
fclose(f);
|
|
|
|
|
|
|
|
// allocate the output matrices and copy the base there
|
|
|
|
*data = cvCreateMat( seq->total, var_count, CV_32F );
|
|
|
|
*missing = cvCreateMat( seq->total, var_count, CV_8U );
|
|
|
|
*responses = cvCreateMat( seq->total, 1, CV_32F );
|
|
|
|
|
|
|
|
cvStartReadSeq( seq, &reader );
|
|
|
|
|
|
|
|
for( i = 0; i < seq->total; i++ )
|
|
|
|
{
|
|
|
|
const float* sdata = (float*)reader.ptr + 1;
|
|
|
|
float* ddata = data[0]->data.fl + var_count*i;
|
|
|
|
float* dr = responses[0]->data.fl + i;
|
|
|
|
uchar* dm = missing[0]->data.ptr + var_count*i;
|
|
|
|
|
|
|
|
for( j = 0; j < var_count; j++ )
|
|
|
|
{
|
|
|
|
ddata[j] = sdata[j];
|
|
|
|
dm[j] = sdata[j] < 0;
|
|
|
|
}
|
|
|
|
*dr = sdata[-1];
|
|
|
|
CV_NEXT_SEQ_ELEM( seq->elem_size, reader );
|
|
|
|
}
|
|
|
|
|
|
|
|
cvReleaseMemStorage( &storage );
|
|
|
|
delete el_ptr;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CvDTree* mushroom_create_dtree( const CvMat* data, const CvMat* missing,
|
|
|
|
const CvMat* responses, float p_weight )
|
|
|
|
{
|
|
|
|
CvDTree* dtree;
|
|
|
|
CvMat* var_type;
|
|
|
|
int i, hr1 = 0, hr2 = 0, p_total = 0;
|
|
|
|
float priors[] = { 1, p_weight };
|
|
|
|
|
|
|
|
var_type = cvCreateMat( data->cols + 1, 1, CV_8U );
|
|
|
|
cvSet( var_type, cvScalarAll(CV_VAR_CATEGORICAL) ); // all the variables are categorical
|
|
|
|
|
|
|
|
dtree = new CvDTree;
|
|
|
|
|
|
|
|
dtree->train( data, CV_ROW_SAMPLE, responses, 0, 0, var_type, missing,
|
|
|
|
CvDTreeParams( 8, // max depth
|
|
|
|
10, // min sample count
|
|
|
|
0, // regression accuracy: N/A here
|
|
|
|
true, // compute surrogate split, as we have missing data
|
|
|
|
15, // max number of categories (use sub-optimal algorithm for larger numbers)
|
|
|
|
10, // the number of cross-validation folds
|
|
|
|
true, // use 1SE rule => smaller tree
|
|
|
|
true, // throw away the pruned tree branches
|
|
|
|
priors // the array of priors, the bigger p_weight, the more attention
|
|
|
|
// to the poisonous mushrooms
|
|
|
|
// (a mushroom will be judjed to be poisonous with bigger chance)
|
|
|
|
));
|
|
|
|
|
|
|
|
// compute hit-rate on the training database, demonstrates predict usage.
|
|
|
|
for( i = 0; i < data->rows; i++ )
|
|
|
|
{
|
|
|
|
CvMat sample, mask;
|
|
|
|
cvGetRow( data, &sample, i );
|
|
|
|
cvGetRow( missing, &mask, i );
|
|
|
|
double r = dtree->predict( &sample, &mask )->value;
|
|
|
|
int d = fabs(r - responses->data.fl[i]) >= FLT_EPSILON;
|
|
|
|
if( d )
|
|
|
|
{
|
|
|
|
if( r != 'p' )
|
|
|
|
hr1++;
|
|
|
|
else
|
|
|
|
hr2++;
|
|
|
|
}
|
|
|
|
p_total += responses->data.fl[i] == 'p';
|
|
|
|
}
|
|
|
|
|
|
|
|
printf( "Results on the training database:\n"
|
|
|
|
"\tPoisonous mushrooms mis-predicted: %d (%g%%)\n"
|
|
|
|
"\tFalse-alarms: %d (%g%%)\n", hr1, (double)hr1*100/p_total,
|
|
|
|
hr2, (double)hr2*100/(data->rows - p_total) );
|
|
|
|
|
|
|
|
cvReleaseMat( &var_type );
|
|
|
|
|
|
|
|
return dtree;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static const char* var_desc[] =
|
|
|
|
{
|
|
|
|
"cap shape (bell=b,conical=c,convex=x,flat=f)",
|
|
|
|
"cap surface (fibrous=f,grooves=g,scaly=y,smooth=s)",
|
|
|
|
"cap color (brown=n,buff=b,cinnamon=c,gray=g,green=r,\n\tpink=p,purple=u,red=e,white=w,yellow=y)",
|
|
|
|
"bruises? (bruises=t,no=f)",
|
|
|
|
"odor (almond=a,anise=l,creosote=c,fishy=y,foul=f,\n\tmusty=m,none=n,pungent=p,spicy=s)",
|
|
|
|
"gill attachment (attached=a,descending=d,free=f,notched=n)",
|
|
|
|
"gill spacing (close=c,crowded=w,distant=d)",
|
|
|
|
"gill size (broad=b,narrow=n)",
|
|
|
|
"gill color (black=k,brown=n,buff=b,chocolate=h,gray=g,\n\tgreen=r,orange=o,pink=p,purple=u,red=e,white=w,yellow=y)",
|
|
|
|
"stalk shape (enlarging=e,tapering=t)",
|
|
|
|
"stalk root (bulbous=b,club=c,cup=u,equal=e,rhizomorphs=z,rooted=r)",
|
|
|
|
"stalk surface above ring (ibrous=f,scaly=y,silky=k,smooth=s)",
|
|
|
|
"stalk surface below ring (ibrous=f,scaly=y,silky=k,smooth=s)",
|
|
|
|
"stalk color above ring (brown=n,buff=b,cinnamon=c,gray=g,orange=o,\n\tpink=p,red=e,white=w,yellow=y)",
|
|
|
|
"stalk color below ring (brown=n,buff=b,cinnamon=c,gray=g,orange=o,\n\tpink=p,red=e,white=w,yellow=y)",
|
|
|
|
"veil type (partial=p,universal=u)",
|
|
|
|
"veil color (brown=n,orange=o,white=w,yellow=y)",
|
|
|
|
"ring number (none=n,one=o,two=t)",
|
|
|
|
"ring type (cobwebby=c,evanescent=e,flaring=f,large=l,\n\tnone=n,pendant=p,sheathing=s,zone=z)",
|
|
|
|
"spore print color (black=k,brown=n,buff=b,chocolate=h,green=r,\n\torange=o,purple=u,white=w,yellow=y)",
|
|
|
|
"population (abundant=a,clustered=c,numerous=n,\n\tscattered=s,several=v,solitary=y)",
|
|
|
|
"habitat (grasses=g,leaves=l,meadows=m,paths=p\n\turban=u,waste=w,woods=d)",
|
|
|
|
0
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void print_variable_importance( CvDTree* dtree, const char** var_desc )
|
|
|
|
{
|
|
|
|
const CvMat* var_importance = dtree->get_var_importance();
|
|
|
|
int i;
|
|
|
|
char input[1000];
|
|
|
|
|
|
|
|
if( !var_importance )
|
|
|
|
{
|
|
|
|
printf( "Error: Variable importance can not be retrieved\n" );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
printf( "Print variable importance information? (y/n) " );
|
|
|
|
int values_read = scanf( "%1s", input );
|
|
|
|
CV_Assert(values_read == 1);
|
|
|
|
|
|
|
|
if( input[0] != 'y' && input[0] != 'Y' )
|
|
|
|
return;
|
|
|
|
|
|
|
|
for( i = 0; i < var_importance->cols*var_importance->rows; i++ )
|
|
|
|
{
|
|
|
|
double val = var_importance->data.db[i];
|
|
|
|
if( var_desc )
|
|
|
|
{
|
|
|
|
char buf[100];
|
|
|
|
int len = (int)(strchr( var_desc[i], '(' ) - var_desc[i] - 1);
|
|
|
|
strncpy( buf, var_desc[i], len );
|
|
|
|
buf[len] = '\0';
|
|
|
|
printf( "%s", buf );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
printf( "var #%d", i );
|
|
|
|
printf( ": %g%%\n", val*100. );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void interactive_classification( CvDTree* dtree, const char** var_desc )
|
|
|
|
{
|
|
|
|
char input[1000];
|
|
|
|
const CvDTreeNode* root;
|
|
|
|
CvDTreeTrainData* data;
|
|
|
|
|
|
|
|
if( !dtree )
|
|
|
|
return;
|
|
|
|
|
|
|
|
root = dtree->get_root();
|
|
|
|
data = dtree->get_data();
|
|
|
|
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
const CvDTreeNode* node;
|
|
|
|
|
|
|
|
printf( "Start/Proceed with interactive mushroom classification (y/n): " );
|
|
|
|
int values_read = scanf( "%1s", input );
|
|
|
|
CV_Assert(values_read == 1);
|
|
|
|
|
|
|
|
if( input[0] != 'y' && input[0] != 'Y' )
|
|
|
|
break;
|
|
|
|
printf( "Enter 1-letter answers, '?' for missing/unknown value...\n" );
|
|
|
|
|
|
|
|
// custom version of predict
|
|
|
|
node = root;
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
CvDTreeSplit* split = node->split;
|
|
|
|
int dir = 0;
|
|
|
|
|
|
|
|
if( !node->left || node->Tn <= dtree->get_pruned_tree_idx() || !node->split )
|
|
|
|
break;
|
|
|
|
|
|
|
|
for( ; split != 0; )
|
|
|
|
{
|
|
|
|
int vi = split->var_idx, j;
|
|
|
|
int count = data->cat_count->data.i[vi];
|
|
|
|
const int* map = data->cat_map->data.i + data->cat_ofs->data.i[vi];
|
|
|
|
|
|
|
|
printf( "%s: ", var_desc[vi] );
|
|
|
|
values_read = scanf( "%1s", input );
|
|
|
|
CV_Assert(values_read == 1);
|
|
|
|
|
|
|
|
if( input[0] == '?' )
|
|
|
|
{
|
|
|
|
split = split->next;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
// convert the input character to the normalized value of the variable
|
|
|
|
for( j = 0; j < count; j++ )
|
|
|
|
if( map[j] == input[0] )
|
|
|
|
break;
|
|
|
|
if( j < count )
|
|
|
|
{
|
|
|
|
dir = (split->subset[j>>5] & (1 << (j&31))) ? -1 : 1;
|
|
|
|
if( split->inversed )
|
|
|
|
dir = -dir;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
printf( "Error: unrecognized value\n" );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !dir )
|
|
|
|
{
|
|
|
|
printf( "Impossible to classify the sample\n");
|
|
|
|
node = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
node = dir < 0 ? node->left : node->right;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( node )
|
|
|
|
printf( "Prediction result: the mushroom is %s\n",
|
|
|
|
node->class_idx == 0 ? "EDIBLE" : "POISONOUS" );
|
|
|
|
printf( "\n-----------------------------\n" );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int main( int argc, char** argv )
|
|
|
|
{
|
|
|
|
CvMat *data = 0, *missing = 0, *responses = 0;
|
|
|
|
CvDTree* dtree;
|
|
|
|
const char* base_path = argc >= 2 ? argv[1] : "agaricus-lepiota.data";
|
|
|
|
|
|
|
|
help();
|
|
|
|
|
|
|
|
if( !mushroom_read_database( base_path, &data, &missing, &responses ) )
|
|
|
|
{
|
|
|
|
printf( "\nUnable to load the training database\n\n");
|
|
|
|
help();
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
dtree = mushroom_create_dtree( data, missing, responses,
|
|
|
|
10 // poisonous mushrooms will have 10x higher weight in the decision tree
|
|
|
|
);
|
|
|
|
cvReleaseMat( &data );
|
|
|
|
cvReleaseMat( &missing );
|
|
|
|
cvReleaseMat( &responses );
|
|
|
|
|
|
|
|
print_variable_importance( dtree, var_desc );
|
|
|
|
interactive_classification( dtree, var_desc );
|
|
|
|
delete dtree;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|