Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

336 lines
10 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
#include "opencv2/ts/gpu_perf.hpp"
using namespace std;
using namespace testing;
using namespace perf;
//////////////////////////////////////////////////////////////////////
// FAST
11 years ago
DEF_PARAM_TEST(Image_Threshold_NonMaxSuppression, string, int, bool);
11 years ago
PERF_TEST_P(Image_Threshold_NonMaxSuppression, Features2D_FAST,
Combine(Values<string>("gpu/perf/aloe.png"),
Values(20),
Bool()))
{
const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
const int threshold = GET_PARAM(1);
const bool nonMaxSuppersion = GET_PARAM(2);
if (PERF_RUN_GPU())
{
cv::gpu::FAST_GPU d_fast(threshold, nonMaxSuppersion, 0.5);
const cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_keypoints;
TEST_CYCLE() d_fast(d_img, cv::gpu::GpuMat(), d_keypoints);
std::vector<cv::KeyPoint> gpu_keypoints;
d_fast.downloadKeypoints(d_keypoints, gpu_keypoints);
sortKeyPoints(gpu_keypoints);
SANITY_CHECK_KEYPOINTS(gpu_keypoints);
}
else
{
std::vector<cv::KeyPoint> cpu_keypoints;
TEST_CYCLE() cv::FAST(img, cpu_keypoints, threshold, nonMaxSuppersion);
SANITY_CHECK_KEYPOINTS(cpu_keypoints);
}
}
//////////////////////////////////////////////////////////////////////
// ORB
DEF_PARAM_TEST(Image_NFeatures, string, int);
PERF_TEST_P(Image_NFeatures, Features2D_ORB,
Combine(Values<string>("gpu/perf/aloe.png"),
Values(4000)))
{
declare.time(300.0);
const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(img.empty());
const int nFeatures = GET_PARAM(1);
if (PERF_RUN_GPU())
{
cv::gpu::ORB_GPU d_orb(nFeatures);
const cv::gpu::GpuMat d_img(img);
cv::gpu::GpuMat d_keypoints, d_descriptors;
TEST_CYCLE() d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
std::vector<cv::KeyPoint> gpu_keypoints;
d_orb.downloadKeyPoints(d_keypoints, gpu_keypoints);
cv::Mat gpu_descriptors(d_descriptors);
gpu_keypoints.resize(10);
gpu_descriptors = gpu_descriptors.rowRange(0, 10);
sortKeyPoints(gpu_keypoints, gpu_descriptors);
SANITY_CHECK_KEYPOINTS(gpu_keypoints, 1e-10);
SANITY_CHECK(gpu_descriptors);
}
else
{
cv::ORB orb(nFeatures);
std::vector<cv::KeyPoint> cpu_keypoints;
cv::Mat cpu_descriptors;
TEST_CYCLE() orb(img, cv::noArray(), cpu_keypoints, cpu_descriptors);
SANITY_CHECK_KEYPOINTS(cpu_keypoints);
SANITY_CHECK(cpu_descriptors);
}
}
//////////////////////////////////////////////////////////////////////
// BFMatch
DEF_PARAM_TEST(DescSize_Norm, int, NormType);
#ifdef OPENCV_TINY_GPU_MODULE
PERF_TEST_P(DescSize_Norm, Features2D_BFMatch, Combine(
Values(64, 128, 256),
Values(NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))
))
#else
PERF_TEST_P(DescSize_Norm, Features2D_BFMatch, Combine(
Values(64, 128, 256),
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))
))
#endif
{
declare.time(20.0);
const int desc_size = GET_PARAM(0);
const int normType = GET_PARAM(1);
const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query(3000, desc_size, type);
declare.in(query, WARMUP_RNG);
cv::Mat train(3000, desc_size, type);
declare.in(train, WARMUP_RNG);
if (PERF_RUN_GPU())
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
const cv::gpu::GpuMat d_query(query);
const cv::gpu::GpuMat d_train(train);
cv::gpu::GpuMat d_trainIdx, d_distance;
TEST_CYCLE() d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
std::vector<cv::DMatch> gpu_matches;
d_matcher.matchDownload(d_trainIdx, d_distance, gpu_matches);
SANITY_CHECK_MATCHES(gpu_matches);
}
else
{
cv::BFMatcher matcher(normType);
std::vector<cv::DMatch> cpu_matches;
TEST_CYCLE() matcher.match(query, train, cpu_matches);
SANITY_CHECK_MATCHES(cpu_matches);
}
}
//////////////////////////////////////////////////////////////////////
// BFKnnMatch
static void toOneRowMatches(const std::vector< std::vector<cv::DMatch> >& src, std::vector<cv::DMatch>& dst)
{
dst.clear();
for (size_t i = 0; i < src.size(); ++i)
for (size_t j = 0; j < src[i].size(); ++j)
dst.push_back(src[i][j]);
}
DEF_PARAM_TEST(DescSize_K_Norm, int, int, NormType);
#ifdef OPENCV_TINY_GPU_MODULE
PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, Combine(
Values(64, 128, 256),
Values(2, 3),
Values(NormType(cv::NORM_L2))
))
#else
PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch, Combine(
Values(64, 128, 256),
Values(2, 3),
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2))
))
#endif
{
declare.time(30.0);
const int desc_size = GET_PARAM(0);
const int k = GET_PARAM(1);
const int normType = GET_PARAM(2);
const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
cv::Mat query(3000, desc_size, type);
declare.in(query, WARMUP_RNG);
cv::Mat train(3000, desc_size, type);
declare.in(train, WARMUP_RNG);
if (PERF_RUN_GPU())
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
const cv::gpu::GpuMat d_query(query);
const cv::gpu::GpuMat d_train(train);
cv::gpu::GpuMat d_trainIdx, d_distance, d_allDist;
TEST_CYCLE() d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k);
std::vector< std::vector<cv::DMatch> > matchesTbl;
d_matcher.knnMatchDownload(d_trainIdx, d_distance, matchesTbl);
std::vector<cv::DMatch> gpu_matches;
toOneRowMatches(matchesTbl, gpu_matches);
SANITY_CHECK_MATCHES(gpu_matches);
}
else
{
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matchesTbl;
TEST_CYCLE() matcher.knnMatch(query, train, matchesTbl, k);
std::vector<cv::DMatch> cpu_matches;
toOneRowMatches(matchesTbl, cpu_matches);
SANITY_CHECK_MATCHES(cpu_matches);
}
}
//////////////////////////////////////////////////////////////////////
// BFRadiusMatch
#ifdef OPENCV_TINY_GPU_MODULE
PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch, Combine(
Values(64, 128, 256),
Values(NormType(cv::NORM_L2))
))
#else
PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch, Combine(
Values(64, 128, 256),
Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2))
))
#endif
{
declare.time(30.0);
const int desc_size = GET_PARAM(0);
const int normType = GET_PARAM(1);
const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
const float maxDistance = 10000;
cv::Mat query(3000, desc_size, type);
declare.in(query, WARMUP_RNG);
cv::Mat train(3000, desc_size, type);
declare.in(train, WARMUP_RNG);
if (PERF_RUN_GPU())
{
cv::gpu::BFMatcher_GPU d_matcher(normType);
const cv::gpu::GpuMat d_query(query);
const cv::gpu::GpuMat d_train(train);
cv::gpu::GpuMat d_trainIdx, d_nMatches, d_distance;
TEST_CYCLE() d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, maxDistance);
std::vector< std::vector<cv::DMatch> > matchesTbl;
d_matcher.radiusMatchDownload(d_trainIdx, d_distance, d_nMatches, matchesTbl);
std::vector<cv::DMatch> gpu_matches;
toOneRowMatches(matchesTbl, gpu_matches);
SANITY_CHECK_MATCHES(gpu_matches);
}
else
{
cv::BFMatcher matcher(normType);
std::vector< std::vector<cv::DMatch> > matchesTbl;
TEST_CYCLE() matcher.radiusMatch(query, train, matchesTbl, maxDistance);
std::vector<cv::DMatch> cpu_matches;
toOneRowMatches(matchesTbl, cpu_matches);
SANITY_CHECK_MATCHES(cpu_matches);
}
}