|
|
|
#include "opencv2/core.hpp"
|
|
|
|
#include "opencv2/core/utility.hpp"
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include "opencv2/imgcodecs.hpp"
|
|
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
static void help()
|
|
|
|
{
|
|
|
|
printf("\nThis program demonstrated the use of the discrete Fourier transform (dft)\n"
|
|
|
|
"The dft of an image is taken and it's power spectrum is displayed.\n"
|
|
|
|
"Usage:\n"
|
|
|
|
"./dft [image_name -- default lena.jpg]\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
const char* keys =
|
|
|
|
{
|
|
|
|
"{help h||}{@image|lena.jpg|input image file}"
|
|
|
|
};
|
|
|
|
|
|
|
|
int main(int argc, const char ** argv)
|
|
|
|
{
|
|
|
|
help();
|
|
|
|
CommandLineParser parser(argc, argv, keys);
|
|
|
|
if (parser.has("help"))
|
|
|
|
{
|
|
|
|
help();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
string filename = parser.get<string>(0);
|
|
|
|
Mat img = imread(samples::findFile(filename), IMREAD_GRAYSCALE);
|
|
|
|
if( img.empty() )
|
|
|
|
{
|
|
|
|
help();
|
|
|
|
printf("Cannot read image file: %s\n", filename.c_str());
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
int M = getOptimalDFTSize( img.rows );
|
|
|
|
int N = getOptimalDFTSize( img.cols );
|
|
|
|
Mat padded;
|
|
|
|
copyMakeBorder(img, padded, 0, M - img.rows, 0, N - img.cols, BORDER_CONSTANT, Scalar::all(0));
|
|
|
|
|
|
|
|
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
|
|
|
|
Mat complexImg;
|
|
|
|
merge(planes, 2, complexImg);
|
|
|
|
|
|
|
|
dft(complexImg, complexImg);
|
|
|
|
|
|
|
|
// compute log(1 + sqrt(Re(DFT(img))**2 + Im(DFT(img))**2))
|
|
|
|
split(complexImg, planes);
|
|
|
|
magnitude(planes[0], planes[1], planes[0]);
|
|
|
|
Mat mag = planes[0];
|
|
|
|
mag += Scalar::all(1);
|
|
|
|
log(mag, mag);
|
|
|
|
|
|
|
|
// crop the spectrum, if it has an odd number of rows or columns
|
|
|
|
mag = mag(Rect(0, 0, mag.cols & -2, mag.rows & -2));
|
|
|
|
|
|
|
|
int cx = mag.cols/2;
|
|
|
|
int cy = mag.rows/2;
|
|
|
|
|
|
|
|
// rearrange the quadrants of Fourier image
|
|
|
|
// so that the origin is at the image center
|
|
|
|
Mat tmp;
|
|
|
|
Mat q0(mag, Rect(0, 0, cx, cy));
|
|
|
|
Mat q1(mag, Rect(cx, 0, cx, cy));
|
|
|
|
Mat q2(mag, Rect(0, cy, cx, cy));
|
|
|
|
Mat q3(mag, Rect(cx, cy, cx, cy));
|
|
|
|
|
|
|
|
q0.copyTo(tmp);
|
|
|
|
q3.copyTo(q0);
|
|
|
|
tmp.copyTo(q3);
|
|
|
|
|
|
|
|
q1.copyTo(tmp);
|
|
|
|
q2.copyTo(q1);
|
|
|
|
tmp.copyTo(q2);
|
|
|
|
|
|
|
|
normalize(mag, mag, 0, 1, NORM_MINMAX);
|
|
|
|
|
|
|
|
imshow("spectrum magnitude", mag);
|
|
|
|
waitKey();
|
|
|
|
return 0;
|
|
|
|
}
|