mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
203 lines
7.1 KiB
203 lines
7.1 KiB
12 years ago
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace cv::gpu;
|
||
|
|
||
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
||
|
|
||
|
Ptr<gpu::HoughLinesDetector> cv::gpu::createHoughLinesDetector(float, float, int, bool, int) { throw_no_cuda(); return Ptr<HoughLinesDetector>(); }
|
||
|
|
||
|
#else /* !defined (HAVE_CUDA) */
|
||
|
|
||
|
namespace cv { namespace gpu { namespace cudev
|
||
|
{
|
||
|
namespace hough
|
||
|
{
|
||
|
int buildPointList_gpu(PtrStepSzb src, unsigned int* list);
|
||
|
}
|
||
|
|
||
|
namespace hough_lines
|
||
|
{
|
||
|
void linesAccum_gpu(const unsigned int* list, int count, PtrStepSzi accum, float rho, float theta, size_t sharedMemPerBlock, bool has20);
|
||
|
int linesGetResult_gpu(PtrStepSzi accum, float2* out, int* votes, int maxSize, float rho, float theta, int threshold, bool doSort);
|
||
|
}
|
||
|
}}}
|
||
|
|
||
|
namespace
|
||
|
{
|
||
|
class HoughLinesDetectorImpl : public HoughLinesDetector
|
||
|
{
|
||
|
public:
|
||
|
HoughLinesDetectorImpl(float rho, float theta, int threshold, bool doSort, int maxLines) :
|
||
|
rho_(rho), theta_(theta), threshold_(threshold), doSort_(doSort), maxLines_(maxLines)
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void detect(InputArray src, OutputArray lines);
|
||
|
void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
|
||
|
|
||
|
void setRho(float rho) { rho_ = rho; }
|
||
|
float getRho() const { return rho_; }
|
||
|
|
||
|
void setTheta(float theta) { theta_ = theta; }
|
||
|
float getTheta() const { return theta_; }
|
||
|
|
||
|
void setThreshold(int threshold) { threshold_ = threshold; }
|
||
|
int getThreshold() const { return threshold_; }
|
||
|
|
||
|
void setDoSort(bool doSort) { doSort_ = doSort; }
|
||
|
bool getDoSort() const { return doSort_; }
|
||
|
|
||
|
void setMaxLines(int maxLines) { maxLines_ = maxLines; }
|
||
|
int getMaxLines() const { return maxLines_; }
|
||
|
|
||
|
void write(FileStorage& fs) const
|
||
|
{
|
||
|
fs << "name" << "HoughLinesDetector_GPU"
|
||
|
<< "rho" << rho_
|
||
|
<< "theta" << theta_
|
||
|
<< "threshold" << threshold_
|
||
|
<< "doSort" << doSort_
|
||
|
<< "maxLines" << maxLines_;
|
||
|
}
|
||
|
|
||
|
void read(const FileNode& fn)
|
||
|
{
|
||
|
CV_Assert( String(fn["name"]) == "HoughLinesDetector_GPU" );
|
||
|
rho_ = (float)fn["rho"];
|
||
|
theta_ = (float)fn["theta"];
|
||
|
threshold_ = (int)fn["threshold"];
|
||
|
doSort_ = (int)fn["doSort"] != 0;
|
||
|
maxLines_ = (int)fn["maxLines"];
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
float rho_;
|
||
|
float theta_;
|
||
|
int threshold_;
|
||
|
bool doSort_;
|
||
|
int maxLines_;
|
||
|
|
||
|
GpuMat accum_;
|
||
|
GpuMat list_;
|
||
|
GpuMat result_;
|
||
|
};
|
||
|
|
||
|
void HoughLinesDetectorImpl::detect(InputArray _src, OutputArray lines)
|
||
|
{
|
||
|
using namespace cv::gpu::cudev::hough;
|
||
|
using namespace cv::gpu::cudev::hough_lines;
|
||
|
|
||
|
GpuMat src = _src.getGpuMat();
|
||
|
|
||
|
CV_Assert( src.type() == CV_8UC1 );
|
||
|
CV_Assert( src.cols < std::numeric_limits<unsigned short>::max() );
|
||
|
CV_Assert( src.rows < std::numeric_limits<unsigned short>::max() );
|
||
|
|
||
|
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, list_);
|
||
|
unsigned int* srcPoints = list_.ptr<unsigned int>();
|
||
|
|
||
|
const int pointsCount = buildPointList_gpu(src, srcPoints);
|
||
|
if (pointsCount == 0)
|
||
|
{
|
||
|
lines.release();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
const int numangle = cvRound(CV_PI / theta_);
|
||
|
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho_);
|
||
|
CV_Assert( numangle > 0 && numrho > 0 );
|
||
|
|
||
|
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum_);
|
||
|
accum_.setTo(Scalar::all(0));
|
||
|
|
||
|
DeviceInfo devInfo;
|
||
|
linesAccum_gpu(srcPoints, pointsCount, accum_, rho_, theta_, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
|
||
|
|
||
|
ensureSizeIsEnough(2, maxLines_, CV_32FC2, result_);
|
||
|
|
||
|
int linesCount = linesGetResult_gpu(accum_, result_.ptr<float2>(0), result_.ptr<int>(1), maxLines_, rho_, theta_, threshold_, doSort_);
|
||
|
|
||
|
if (linesCount == 0)
|
||
|
{
|
||
|
lines.release();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
result_.cols = linesCount;
|
||
|
result_.copyTo(lines);
|
||
|
}
|
||
|
|
||
|
void HoughLinesDetectorImpl::downloadResults(InputArray _d_lines, OutputArray h_lines, OutputArray h_votes)
|
||
|
{
|
||
|
GpuMat d_lines = _d_lines.getGpuMat();
|
||
|
|
||
|
if (d_lines.empty())
|
||
|
{
|
||
|
h_lines.release();
|
||
|
if (h_votes.needed())
|
||
|
h_votes.release();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
CV_Assert( d_lines.rows == 2 && d_lines.type() == CV_32FC2 );
|
||
|
|
||
|
d_lines.row(0).download(h_lines);
|
||
|
|
||
|
if (h_votes.needed())
|
||
|
{
|
||
|
GpuMat d_votes(1, d_lines.cols, CV_32SC1, d_lines.ptr<int>(1));
|
||
|
d_votes.download(h_votes);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Ptr<HoughLinesDetector> cv::gpu::createHoughLinesDetector(float rho, float theta, int threshold, bool doSort, int maxLines)
|
||
|
{
|
||
|
return new HoughLinesDetectorImpl(rho, theta, threshold, doSort, maxLines);
|
||
|
}
|
||
|
|
||
|
#endif /* !defined (HAVE_CUDA) */
|