|
|
|
#include <cstring>
|
|
|
|
#include <cmath>
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
#include "polynom_solver.h"
|
|
|
|
#include "p3p.h"
|
|
|
|
|
|
|
|
void p3p::init_inverse_parameters()
|
|
|
|
{
|
|
|
|
inv_fx = 1. / fx;
|
|
|
|
inv_fy = 1. / fy;
|
|
|
|
cx_fx = cx / fx;
|
|
|
|
cy_fy = cy / fy;
|
|
|
|
}
|
|
|
|
|
|
|
|
p3p::p3p(cv::Mat cameraMatrix)
|
|
|
|
{
|
|
|
|
if (cameraMatrix.depth() == CV_32F)
|
|
|
|
init_camera_parameters<float>(cameraMatrix);
|
|
|
|
else
|
|
|
|
init_camera_parameters<double>(cameraMatrix);
|
|
|
|
init_inverse_parameters();
|
|
|
|
}
|
|
|
|
|
|
|
|
p3p::p3p(double _fx, double _fy, double _cx, double _cy)
|
|
|
|
{
|
|
|
|
fx = _fx;
|
|
|
|
fy = _fy;
|
|
|
|
cx = _cx;
|
|
|
|
cy = _cy;
|
|
|
|
init_inverse_parameters();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool p3p::solve(cv::Mat& R, cv::Mat& tvec, const cv::Mat& opoints, const cv::Mat& ipoints)
|
|
|
|
{
|
|
|
|
double rotation_matrix[3][3], translation[3];
|
|
|
|
std::vector<double> points;
|
|
|
|
if (opoints.depth() == ipoints.depth())
|
|
|
|
{
|
|
|
|
if (opoints.depth() == CV_32F)
|
|
|
|
extract_points<cv::Point3f,cv::Point2f>(opoints, ipoints, points);
|
|
|
|
else
|
|
|
|
extract_points<cv::Point3d,cv::Point2d>(opoints, ipoints, points);
|
|
|
|
}
|
|
|
|
else if (opoints.depth() == CV_32F)
|
|
|
|
extract_points<cv::Point3f,cv::Point2d>(opoints, ipoints, points);
|
|
|
|
else
|
|
|
|
extract_points<cv::Point3d,cv::Point2f>(opoints, ipoints, points);
|
|
|
|
|
|
|
|
bool result = solve(rotation_matrix, translation, points[0], points[1], points[2], points[3], points[4], points[5],
|
|
|
|
points[6], points[7], points[8], points[9], points[10], points[11], points[12], points[13], points[14],
|
|
|
|
points[15], points[16], points[17], points[18], points[19]);
|
|
|
|
cv::Mat(3, 1, CV_64F, translation).copyTo(tvec);
|
|
|
|
cv::Mat(3, 3, CV_64F, rotation_matrix).copyTo(R);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool p3p::solve(double R[3][3], double t[3],
|
|
|
|
double mu0, double mv0, double X0, double Y0, double Z0,
|
|
|
|
double mu1, double mv1, double X1, double Y1, double Z1,
|
|
|
|
double mu2, double mv2, double X2, double Y2, double Z2,
|
|
|
|
double mu3, double mv3, double X3, double Y3, double Z3)
|
|
|
|
{
|
|
|
|
double Rs[4][3][3], ts[4][3];
|
|
|
|
|
|
|
|
int n = solve(Rs, ts, mu0, mv0, X0, Y0, Z0, mu1, mv1, X1, Y1, Z1, mu2, mv2, X2, Y2, Z2);
|
|
|
|
|
|
|
|
if (n == 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
int ns = 0;
|
|
|
|
double min_reproj = 0;
|
|
|
|
for(int i = 0; i < n; i++) {
|
|
|
|
double X3p = Rs[i][0][0] * X3 + Rs[i][0][1] * Y3 + Rs[i][0][2] * Z3 + ts[i][0];
|
|
|
|
double Y3p = Rs[i][1][0] * X3 + Rs[i][1][1] * Y3 + Rs[i][1][2] * Z3 + ts[i][1];
|
|
|
|
double Z3p = Rs[i][2][0] * X3 + Rs[i][2][1] * Y3 + Rs[i][2][2] * Z3 + ts[i][2];
|
|
|
|
double mu3p = cx + fx * X3p / Z3p;
|
|
|
|
double mv3p = cy + fy * Y3p / Z3p;
|
|
|
|
double reproj = (mu3p - mu3) * (mu3p - mu3) + (mv3p - mv3) * (mv3p - mv3);
|
|
|
|
if (i == 0 || min_reproj > reproj) {
|
|
|
|
ns = i;
|
|
|
|
min_reproj = reproj;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for(int i = 0; i < 3; i++) {
|
|
|
|
for(int j = 0; j < 3; j++)
|
|
|
|
R[i][j] = Rs[ns][i][j];
|
|
|
|
t[i] = ts[ns][i];
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
int p3p::solve(double R[4][3][3], double t[4][3],
|
|
|
|
double mu0, double mv0, double X0, double Y0, double Z0,
|
|
|
|
double mu1, double mv1, double X1, double Y1, double Z1,
|
|
|
|
double mu2, double mv2, double X2, double Y2, double Z2)
|
|
|
|
{
|
|
|
|
double mk0, mk1, mk2;
|
|
|
|
double norm;
|
|
|
|
|
|
|
|
mu0 = inv_fx * mu0 - cx_fx;
|
|
|
|
mv0 = inv_fy * mv0 - cy_fy;
|
|
|
|
norm = sqrt(mu0 * mu0 + mv0 * mv0 + 1);
|
|
|
|
mk0 = 1. / norm; mu0 *= mk0; mv0 *= mk0;
|
|
|
|
|
|
|
|
mu1 = inv_fx * mu1 - cx_fx;
|
|
|
|
mv1 = inv_fy * mv1 - cy_fy;
|
|
|
|
norm = sqrt(mu1 * mu1 + mv1 * mv1 + 1);
|
|
|
|
mk1 = 1. / norm; mu1 *= mk1; mv1 *= mk1;
|
|
|
|
|
|
|
|
mu2 = inv_fx * mu2 - cx_fx;
|
|
|
|
mv2 = inv_fy * mv2 - cy_fy;
|
|
|
|
norm = sqrt(mu2 * mu2 + mv2 * mv2 + 1);
|
|
|
|
mk2 = 1. / norm; mu2 *= mk2; mv2 *= mk2;
|
|
|
|
|
|
|
|
double distances[3];
|
|
|
|
distances[0] = sqrt( (X1 - X2) * (X1 - X2) + (Y1 - Y2) * (Y1 - Y2) + (Z1 - Z2) * (Z1 - Z2) );
|
|
|
|
distances[1] = sqrt( (X0 - X2) * (X0 - X2) + (Y0 - Y2) * (Y0 - Y2) + (Z0 - Z2) * (Z0 - Z2) );
|
|
|
|
distances[2] = sqrt( (X0 - X1) * (X0 - X1) + (Y0 - Y1) * (Y0 - Y1) + (Z0 - Z1) * (Z0 - Z1) );
|
|
|
|
|
|
|
|
// Calculate angles
|
|
|
|
double cosines[3];
|
|
|
|
cosines[0] = mu1 * mu2 + mv1 * mv2 + mk1 * mk2;
|
|
|
|
cosines[1] = mu0 * mu2 + mv0 * mv2 + mk0 * mk2;
|
|
|
|
cosines[2] = mu0 * mu1 + mv0 * mv1 + mk0 * mk1;
|
|
|
|
|
|
|
|
double lengths[4][3];
|
|
|
|
int n = solve_for_lengths(lengths, distances, cosines);
|
|
|
|
|
|
|
|
int nb_solutions = 0;
|
|
|
|
for(int i = 0; i < n; i++) {
|
|
|
|
double M_orig[3][3];
|
|
|
|
|
|
|
|
M_orig[0][0] = lengths[i][0] * mu0;
|
|
|
|
M_orig[0][1] = lengths[i][0] * mv0;
|
|
|
|
M_orig[0][2] = lengths[i][0] * mk0;
|
|
|
|
|
|
|
|
M_orig[1][0] = lengths[i][1] * mu1;
|
|
|
|
M_orig[1][1] = lengths[i][1] * mv1;
|
|
|
|
M_orig[1][2] = lengths[i][1] * mk1;
|
|
|
|
|
|
|
|
M_orig[2][0] = lengths[i][2] * mu2;
|
|
|
|
M_orig[2][1] = lengths[i][2] * mv2;
|
|
|
|
M_orig[2][2] = lengths[i][2] * mk2;
|
|
|
|
|
|
|
|
if (!align(M_orig, X0, Y0, Z0, X1, Y1, Z1, X2, Y2, Z2, R[nb_solutions], t[nb_solutions]))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
nb_solutions++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return nb_solutions;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Given 3D distances between three points and cosines of 3 angles at the apex, calculates
|
|
|
|
/// the lentghs of the line segments connecting projection center (P) and the three 3D points (A, B, C).
|
|
|
|
/// Returned distances are for |PA|, |PB|, |PC| respectively.
|
|
|
|
/// Only the solution to the main branch.
|
|
|
|
/// Reference : X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
|
|
|
|
/// IEEE Trans. on PAMI, vol. 25, No. 8, August 2003
|
|
|
|
/// \param lengths3D Lengths of line segments up to four solutions.
|
|
|
|
/// \param dist3D Distance between 3D points in pairs |BC|, |AC|, |AB|.
|
|
|
|
/// \param cosines Cosine of the angles /_BPC, /_APC, /_APB.
|
|
|
|
/// \returns Number of solutions.
|
|
|
|
/// WARNING: NOT ALL THE DEGENERATE CASES ARE IMPLEMENTED
|
|
|
|
|
|
|
|
int p3p::solve_for_lengths(double lengths[4][3], double distances[3], double cosines[3])
|
|
|
|
{
|
|
|
|
double p = cosines[0] * 2;
|
|
|
|
double q = cosines[1] * 2;
|
|
|
|
double r = cosines[2] * 2;
|
|
|
|
|
|
|
|
double inv_d22 = 1. / (distances[2] * distances[2]);
|
|
|
|
double a = inv_d22 * (distances[0] * distances[0]);
|
|
|
|
double b = inv_d22 * (distances[1] * distances[1]);
|
|
|
|
|
|
|
|
double a2 = a * a, b2 = b * b, p2 = p * p, q2 = q * q, r2 = r * r;
|
|
|
|
double pr = p * r, pqr = q * pr;
|
|
|
|
|
|
|
|
// Check reality condition (the four points should not be coplanar)
|
|
|
|
if (p2 + q2 + r2 - pqr - 1 == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
double ab = a * b, a_2 = 2*a;
|
|
|
|
|
|
|
|
double A = -2 * b + b2 + a2 + 1 + ab*(2 - r2) - a_2;
|
|
|
|
|
|
|
|
// Check reality condition
|
|
|
|
if (A == 0) return 0;
|
|
|
|
|
|
|
|
double a_4 = 4*a;
|
|
|
|
|
|
|
|
double B = q*(-2*(ab + a2 + 1 - b) + r2*ab + a_4) + pr*(b - b2 + ab);
|
|
|
|
double C = q2 + b2*(r2 + p2 - 2) - b*(p2 + pqr) - ab*(r2 + pqr) + (a2 - a_2)*(2 + q2) + 2;
|
|
|
|
double D = pr*(ab-b2+b) + q*((p2-2)*b + 2 * (ab - a2) + a_4 - 2);
|
|
|
|
double E = 1 + 2*(b - a - ab) + b2 - b*p2 + a2;
|
|
|
|
|
|
|
|
double temp = (p2*(a-1+b) + r2*(a-1-b) + pqr - a*pqr);
|
|
|
|
double b0 = b * temp * temp;
|
|
|
|
// Check reality condition
|
|
|
|
if (b0 == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
double real_roots[4];
|
|
|
|
int n = solve_deg4(A, B, C, D, E, real_roots[0], real_roots[1], real_roots[2], real_roots[3]);
|
|
|
|
|
|
|
|
if (n == 0)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
int nb_solutions = 0;
|
|
|
|
double r3 = r2*r, pr2 = p*r2, r3q = r3 * q;
|
|
|
|
double inv_b0 = 1. / b0;
|
|
|
|
|
|
|
|
// For each solution of x
|
|
|
|
for(int i = 0; i < n; i++) {
|
|
|
|
double x = real_roots[i];
|
|
|
|
|
|
|
|
// Check reality condition
|
|
|
|
if (x <= 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
double x2 = x*x;
|
|
|
|
|
|
|
|
double b1 =
|
|
|
|
((1-a-b)*x2 + (q*a-q)*x + 1 - a + b) *
|
|
|
|
(((r3*(a2 + ab*(2 - r2) - a_2 + b2 - 2*b + 1)) * x +
|
|
|
|
|
|
|
|
(r3q*(2*(b-a2) + a_4 + ab*(r2 - 2) - 2) + pr2*(1 + a2 + 2*(ab-a-b) + r2*(b - b2) + b2))) * x2 +
|
|
|
|
|
|
|
|
(r3*(q2*(1-2*a+a2) + r2*(b2-ab) - a_4 + 2*(a2 - b2) + 2) + r*p2*(b2 + 2*(ab - b - a) + 1 + a2) + pr2*q*(a_4 + 2*(b - ab - a2) - 2 - r2*b)) * x +
|
|
|
|
|
|
|
|
2*r3q*(a_2 - b - a2 + ab - 1) + pr2*(q2 - a_4 + 2*(a2 - b2) + r2*b + q2*(a2 - a_2) + 2) +
|
|
|
|
p2*(p*(2*(ab - a - b) + a2 + b2 + 1) + 2*q*r*(b + a_2 - a2 - ab - 1)));
|
|
|
|
|
|
|
|
// Check reality condition
|
|
|
|
if (b1 <= 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
double y = inv_b0 * b1;
|
|
|
|
double v = x2 + y*y - x*y*r;
|
|
|
|
|
|
|
|
if (v <= 0)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
double Z = distances[2] / sqrt(v);
|
|
|
|
double X = x * Z;
|
|
|
|
double Y = y * Z;
|
|
|
|
|
|
|
|
lengths[nb_solutions][0] = X;
|
|
|
|
lengths[nb_solutions][1] = Y;
|
|
|
|
lengths[nb_solutions][2] = Z;
|
|
|
|
|
|
|
|
nb_solutions++;
|
|
|
|
}
|
|
|
|
|
|
|
|
return nb_solutions;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool p3p::align(double M_end[3][3],
|
|
|
|
double X0, double Y0, double Z0,
|
|
|
|
double X1, double Y1, double Z1,
|
|
|
|
double X2, double Y2, double Z2,
|
|
|
|
double R[3][3], double T[3])
|
|
|
|
{
|
|
|
|
// Centroids:
|
|
|
|
double C_start[3], C_end[3];
|
|
|
|
for(int i = 0; i < 3; i++) C_end[i] = (M_end[0][i] + M_end[1][i] + M_end[2][i]) / 3;
|
|
|
|
C_start[0] = (X0 + X1 + X2) / 3;
|
|
|
|
C_start[1] = (Y0 + Y1 + Y2) / 3;
|
|
|
|
C_start[2] = (Z0 + Z1 + Z2) / 3;
|
|
|
|
|
|
|
|
// Covariance matrix s:
|
|
|
|
double s[3 * 3];
|
|
|
|
for(int j = 0; j < 3; j++) {
|
|
|
|
s[0 * 3 + j] = (X0 * M_end[0][j] + X1 * M_end[1][j] + X2 * M_end[2][j]) / 3 - C_end[j] * C_start[0];
|
|
|
|
s[1 * 3 + j] = (Y0 * M_end[0][j] + Y1 * M_end[1][j] + Y2 * M_end[2][j]) / 3 - C_end[j] * C_start[1];
|
|
|
|
s[2 * 3 + j] = (Z0 * M_end[0][j] + Z1 * M_end[1][j] + Z2 * M_end[2][j]) / 3 - C_end[j] * C_start[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
double Qs[16], evs[4], U[16];
|
|
|
|
|
|
|
|
Qs[0 * 4 + 0] = s[0 * 3 + 0] + s[1 * 3 + 1] + s[2 * 3 + 2];
|
|
|
|
Qs[1 * 4 + 1] = s[0 * 3 + 0] - s[1 * 3 + 1] - s[2 * 3 + 2];
|
|
|
|
Qs[2 * 4 + 2] = s[1 * 3 + 1] - s[2 * 3 + 2] - s[0 * 3 + 0];
|
|
|
|
Qs[3 * 4 + 3] = s[2 * 3 + 2] - s[0 * 3 + 0] - s[1 * 3 + 1];
|
|
|
|
|
|
|
|
Qs[1 * 4 + 0] = Qs[0 * 4 + 1] = s[1 * 3 + 2] - s[2 * 3 + 1];
|
|
|
|
Qs[2 * 4 + 0] = Qs[0 * 4 + 2] = s[2 * 3 + 0] - s[0 * 3 + 2];
|
|
|
|
Qs[3 * 4 + 0] = Qs[0 * 4 + 3] = s[0 * 3 + 1] - s[1 * 3 + 0];
|
|
|
|
Qs[2 * 4 + 1] = Qs[1 * 4 + 2] = s[1 * 3 + 0] + s[0 * 3 + 1];
|
|
|
|
Qs[3 * 4 + 1] = Qs[1 * 4 + 3] = s[2 * 3 + 0] + s[0 * 3 + 2];
|
|
|
|
Qs[3 * 4 + 2] = Qs[2 * 4 + 3] = s[2 * 3 + 1] + s[1 * 3 + 2];
|
|
|
|
|
|
|
|
jacobi_4x4(Qs, evs, U);
|
|
|
|
|
|
|
|
// Looking for the largest eigen value:
|
|
|
|
int i_ev = 0;
|
|
|
|
double ev_max = evs[i_ev];
|
|
|
|
for(int i = 1; i < 4; i++)
|
|
|
|
if (evs[i] > ev_max)
|
|
|
|
ev_max = evs[i_ev = i];
|
|
|
|
|
|
|
|
// Quaternion:
|
|
|
|
double q[4];
|
|
|
|
for(int i = 0; i < 4; i++)
|
|
|
|
q[i] = U[i * 4 + i_ev];
|
|
|
|
|
|
|
|
double q02 = q[0] * q[0], q12 = q[1] * q[1], q22 = q[2] * q[2], q32 = q[3] * q[3];
|
|
|
|
double q0_1 = q[0] * q[1], q0_2 = q[0] * q[2], q0_3 = q[0] * q[3];
|
|
|
|
double q1_2 = q[1] * q[2], q1_3 = q[1] * q[3];
|
|
|
|
double q2_3 = q[2] * q[3];
|
|
|
|
|
|
|
|
R[0][0] = q02 + q12 - q22 - q32;
|
|
|
|
R[0][1] = 2. * (q1_2 - q0_3);
|
|
|
|
R[0][2] = 2. * (q1_3 + q0_2);
|
|
|
|
|
|
|
|
R[1][0] = 2. * (q1_2 + q0_3);
|
|
|
|
R[1][1] = q02 + q22 - q12 - q32;
|
|
|
|
R[1][2] = 2. * (q2_3 - q0_1);
|
|
|
|
|
|
|
|
R[2][0] = 2. * (q1_3 - q0_2);
|
|
|
|
R[2][1] = 2. * (q2_3 + q0_1);
|
|
|
|
R[2][2] = q02 + q32 - q12 - q22;
|
|
|
|
|
|
|
|
for(int i = 0; i < 3; i++)
|
|
|
|
T[i] = C_end[i] - (R[i][0] * C_start[0] + R[i][1] * C_start[1] + R[i][2] * C_start[2]);
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool p3p::jacobi_4x4(double * A, double * D, double * U)
|
|
|
|
{
|
|
|
|
double B[4], Z[4];
|
|
|
|
double Id[16] = {1., 0., 0., 0.,
|
|
|
|
0., 1., 0., 0.,
|
|
|
|
0., 0., 1., 0.,
|
|
|
|
0., 0., 0., 1.};
|
|
|
|
|
|
|
|
memcpy(U, Id, 16 * sizeof(double));
|
|
|
|
|
|
|
|
B[0] = A[0]; B[1] = A[5]; B[2] = A[10]; B[3] = A[15];
|
|
|
|
memcpy(D, B, 4 * sizeof(double));
|
|
|
|
memset(Z, 0, 4 * sizeof(double));
|
|
|
|
|
|
|
|
for(int iter = 0; iter < 50; iter++) {
|
|
|
|
double sum = fabs(A[1]) + fabs(A[2]) + fabs(A[3]) + fabs(A[6]) + fabs(A[7]) + fabs(A[11]);
|
|
|
|
|
|
|
|
if (sum == 0.0)
|
|
|
|
return true;
|
|
|
|
|
|
|
|
double tresh = (iter < 3) ? 0.2 * sum / 16. : 0.0;
|
|
|
|
for(int i = 0; i < 3; i++) {
|
|
|
|
double * pAij = A + 5 * i + 1;
|
|
|
|
for(int j = i + 1 ; j < 4; j++) {
|
|
|
|
double Aij = *pAij;
|
|
|
|
double eps_machine = 100.0 * fabs(Aij);
|
|
|
|
|
|
|
|
if ( iter > 3 && fabs(D[i]) + eps_machine == fabs(D[i]) && fabs(D[j]) + eps_machine == fabs(D[j]) )
|
|
|
|
*pAij = 0.0;
|
|
|
|
else if (fabs(Aij) > tresh) {
|
|
|
|
double hh = D[j] - D[i], t;
|
|
|
|
if (fabs(hh) + eps_machine == fabs(hh))
|
|
|
|
t = Aij / hh;
|
|
|
|
else {
|
|
|
|
double theta = 0.5 * hh / Aij;
|
|
|
|
t = 1.0 / (fabs(theta) + sqrt(1.0 + theta * theta));
|
|
|
|
if (theta < 0.0) t = -t;
|
|
|
|
}
|
|
|
|
|
|
|
|
hh = t * Aij;
|
|
|
|
Z[i] -= hh;
|
|
|
|
Z[j] += hh;
|
|
|
|
D[i] -= hh;
|
|
|
|
D[j] += hh;
|
|
|
|
*pAij = 0.0;
|
|
|
|
|
|
|
|
double c = 1.0 / sqrt(1 + t * t);
|
|
|
|
double s = t * c;
|
|
|
|
double tau = s / (1.0 + c);
|
|
|
|
for(int k = 0; k <= i - 1; k++) {
|
|
|
|
double g = A[k * 4 + i], h = A[k * 4 + j];
|
|
|
|
A[k * 4 + i] = g - s * (h + g * tau);
|
|
|
|
A[k * 4 + j] = h + s * (g - h * tau);
|
|
|
|
}
|
|
|
|
for(int k = i + 1; k <= j - 1; k++) {
|
|
|
|
double g = A[i * 4 + k], h = A[k * 4 + j];
|
|
|
|
A[i * 4 + k] = g - s * (h + g * tau);
|
|
|
|
A[k * 4 + j] = h + s * (g - h * tau);
|
|
|
|
}
|
|
|
|
for(int k = j + 1; k < 4; k++) {
|
|
|
|
double g = A[i * 4 + k], h = A[j * 4 + k];
|
|
|
|
A[i * 4 + k] = g - s * (h + g * tau);
|
|
|
|
A[j * 4 + k] = h + s * (g - h * tau);
|
|
|
|
}
|
|
|
|
for(int k = 0; k < 4; k++) {
|
|
|
|
double g = U[k * 4 + i], h = U[k * 4 + j];
|
|
|
|
U[k * 4 + i] = g - s * (h + g * tau);
|
|
|
|
U[k * 4 + j] = h + s * (g - h * tau);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
pAij++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for(int i = 0; i < 4; i++) B[i] += Z[i];
|
|
|
|
memcpy(D, B, 4 * sizeof(double));
|
|
|
|
memset(Z, 0, 4 * sizeof(double));
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|