Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

466 lines
17 KiB

#include <iostream>
#include <fstream>
#include <thread>
#include <exception>
#include <unordered_map>
#include <vector>
#include <opencv2/gapi.hpp>
#include <opencv2/highgui.hpp> // cv::CommandLineParser
#include <opencv2/core/utils/filesystem.hpp>
#if defined(_WIN32)
#define NOMINMAX
#include <windows.h>
#undef NOMINMAX
#endif
#include "pipeline_modeling_tool/dummy_source.hpp"
#include "pipeline_modeling_tool/utils.hpp"
#include "pipeline_modeling_tool/pipeline_builder.hpp"
enum class AppMode {
REALTIME,
BENCHMARK
};
static AppMode strToAppMode(const std::string& mode_str) {
if (mode_str == "realtime") {
return AppMode::REALTIME;
} else if (mode_str == "benchmark") {
return AppMode::BENCHMARK;
} else {
throw std::logic_error("Unsupported AppMode: " + mode_str +
"\nPlease chose between: realtime and benchmark");
}
}
template <typename T>
T read(const cv::FileNode& node) {
return static_cast<T>(node);
}
static cv::FileNode check_and_get_fn(const cv::FileNode& fn,
const std::string& field,
const std::string& uplvl) {
const bool is_map = fn.isMap();
if (!is_map || fn[field].empty()) {
throw std::logic_error(uplvl + " must contain field: " + field);
}
return fn[field];
}
static cv::FileNode check_and_get_fn(const cv::FileStorage& fs,
const std::string& field,
const std::string& uplvl) {
auto fn = fs[field];
if (fn.empty()) {
throw std::logic_error(uplvl + " must contain field: " + field);
}
return fn;
}
template <typename T, typename FileT>
T check_and_read(const FileT& f,
const std::string& field,
const std::string& uplvl) {
auto fn = check_and_get_fn(f, field, uplvl);
return read<T>(fn);
}
template <typename T>
cv::optional<T> readOpt(const cv::FileNode& fn) {
return fn.empty() ? cv::optional<T>() : cv::optional<T>(read<T>(fn));
}
template <typename T>
std::vector<T> readList(const cv::FileNode& fn,
const std::string& field,
const std::string& uplvl) {
auto fn_field = check_and_get_fn(fn, field, uplvl);
if (!fn_field.isSeq()) {
throw std::logic_error(field + " in " + uplvl + " must be a sequence");
}
std::vector<T> vec;
for (auto iter : fn_field) {
vec.push_back(read<T>(iter));
}
return vec;
}
template <typename T>
std::vector<T> readVec(const cv::FileNode& fn,
const std::string& field,
const std::string& uplvl) {
auto fn_field = check_and_get_fn(fn, field, uplvl);
std::vector<T> vec;
fn_field >> vec;
return vec;
}
static int strToPrecision(const std::string& precision) {
static std::unordered_map<std::string, int> str_to_precision = {
{"U8", CV_8U}, {"FP32", CV_32F}, {"FP16", CV_16F}
};
auto it = str_to_precision.find(precision);
if (it == str_to_precision.end()) {
throw std::logic_error("Unsupported precision: " + precision);
}
return it->second;
}
template <>
OutputDescr read<OutputDescr>(const cv::FileNode& fn) {
auto dims = readVec<int>(fn, "dims", "output");
auto str_prec = check_and_read<std::string>(fn, "precision", "output");
return OutputDescr{dims, strToPrecision(str_prec)};
}
template <>
Edge read<Edge>(const cv::FileNode& fn) {
auto from = check_and_read<std::string>(fn, "from", "edge");
auto to = check_and_read<std::string>(fn, "to", "edge");
auto splitNameAndPort = [](const std::string& str) {
auto pos = str.find(':');
auto name =
pos == std::string::npos ? str : std::string(str.c_str(), pos);
size_t port =
pos == std::string::npos ? 0 : std::atoi(str.c_str() + pos + 1);
return std::make_pair(name, port);
};
auto p1 = splitNameAndPort(from);
auto p2 = splitNameAndPort(to);
return Edge{Edge::P{p1.first, p1.second}, Edge::P{p2.first, p2.second}};
}
static std::string getModelsPath() {
static char* models_path_c = std::getenv("PIPELINE_MODELS_PATH");
static std::string models_path = models_path_c ? models_path_c : ".";
return models_path;
}
template <>
ModelPath read<ModelPath>(const cv::FileNode& fn) {
using cv::utils::fs::join;
if (!fn["xml"].empty() && !fn["bin"].empty()) {
return ModelPath{LoadPath{join(getModelsPath(), fn["xml"].string()),
join(getModelsPath(), fn["bin"].string())}};
} else if (!fn["blob"].empty()){
return ModelPath{ImportPath{join(getModelsPath(), fn["blob"].string())}};
} else {
const std::string emsg = R""""(
Path to OpenVINO model must be specified in either of two formats:
1.
xml: path to *.xml
bin: path to *.bin
2.
blob: path to *.blob
)"""";
throw std::logic_error(emsg);
}
}
static PLMode strToPLMode(const std::string& mode_str) {
if (mode_str == "streaming") {
return PLMode::STREAMING;
} else if (mode_str == "regular") {
return PLMode::REGULAR;
} else {
throw std::logic_error("Unsupported PLMode: " + mode_str +
"\nPlease chose between: streaming and regular");
}
}
template <>
CallParams read<CallParams>(const cv::FileNode& fn) {
auto name =
check_and_read<std::string>(fn, "name", "node");
// FIXME: Impossible to read size_t due OpenCV limitations.
auto call_every_nth_opt = readOpt<int>(fn["call_every_nth"]);
auto call_every_nth = call_every_nth_opt.value_or(1);
if (call_every_nth <= 0) {
throw std::logic_error(
name + " call_every_nth must be greater than zero\n"
"Current call_every_nth: " + std::to_string(call_every_nth));
}
return CallParams{std::move(name), static_cast<size_t>(call_every_nth)};
}
template <>
InferParams read<InferParams>(const cv::FileNode& fn) {
auto name =
check_and_read<std::string>(fn, "name", "node");
InferParams params;
params.path = read<ModelPath>(fn);
params.device = check_and_read<std::string>(fn, "device", name);
params.input_layers = readList<std::string>(fn, "input_layers", name);
params.output_layers = readList<std::string>(fn, "output_layers", name);
return params;
}
template <>
DummyParams read<DummyParams>(const cv::FileNode& fn) {
auto name =
check_and_read<std::string>(fn, "name", "node");
DummyParams params;
params.time = check_and_read<double>(fn, "time", name);
if (params.time < 0) {
throw std::logic_error(name + " time must be positive");
}
params.output = check_and_read<OutputDescr>(fn, "output", name);
return params;
}
static std::vector<std::string> parseExecList(const std::string& exec_list) {
std::vector<std::string> pl_types;
std::stringstream ss(exec_list);
std::string pl_type;
while (getline(ss, pl_type, ',')) {
pl_types.push_back(pl_type);
}
return pl_types;
}
static void loadConfig(const std::string& filename,
std::map<std::string, std::string>& config) {
cv::FileStorage fs(filename, cv::FileStorage::READ);
if (!fs.isOpened()) {
throw std::runtime_error("Failed to load config: " + filename);
}
cv::FileNode root = fs.root();
for (auto it = root.begin(); it != root.end(); ++it) {
auto device = *it;
if (!device.isMap()) {
throw std::runtime_error("Failed to parse config: " + filename);
}
for (auto item : device) {
config.emplace(item.name(), item.string());
}
}
}
int main(int argc, char* argv[]) {
#if defined(_WIN32)
timeBeginPeriod(1);
#endif
try {
const std::string keys =
"{ h help | | Print this help message. }"
"{ cfg | | Path to the config which is either"
" YAML file or string. }"
"{ load_config | | Optional. Path to XML/YAML/JSON file"
" to load custom IE parameters. }"
"{ cache_dir | | Optional. Enables caching of loaded models"
" to specified directory. }"
"{ log_file | | Optional. If file is specified, app will"
" dump expanded execution information. }"
"{ pl_mode | streaming | Optional. Pipeline mode: streaming/regular"
" if it's specified will be applied for"
" every pipeline. }"
"{ qc | 1 | Optional. Calculated automatically by G-API"
" if set to 0. If it's specified will be"
" applied for every pipeline. }"
"{ app_mode | realtime | Application mode (realtime/benchmark). }"
"{ drop_frames | false | Drop frames if they come earlier than pipeline is completed. }"
"{ exec_list | | A comma-separated list of pipelines that"
" will be executed. Spaces around commas"
" are prohibited. }";
cv::CommandLineParser cmd(argc, argv, keys);
if (cmd.has("help")) {
cmd.printMessage();
return 0;
}
const auto cfg = cmd.get<std::string>("cfg");
const auto load_config = cmd.get<std::string>("load_config");
const auto cached_dir = cmd.get<std::string>("cache_dir");
const auto log_file = cmd.get<std::string>("log_file");
const auto cmd_pl_mode = strToPLMode(cmd.get<std::string>("pl_mode"));
const auto qc = cmd.get<int>("qc");
const auto app_mode = strToAppMode(cmd.get<std::string>("app_mode"));
const auto exec_str = cmd.get<std::string>("exec_list");
const auto drop_frames = cmd.get<bool>("drop_frames");
cv::FileStorage fs;
if (cfg.empty()) {
throw std::logic_error("Config must be specified via --cfg option");
}
// NB: *.yml
if (cfg.size() < 5) {
throw std::logic_error("--cfg string must contain at least 5 symbols"
" to determine if it's a file (*.yml) a or string");
}
if (cfg.substr(cfg.size() - 4, cfg.size()) == ".yml") {
if (!fs.open(cfg, cv::FileStorage::READ)) {
throw std::logic_error("Failed to open config file: " + cfg);
}
} else {
fs = cv::FileStorage(cfg, cv::FileStorage::FORMAT_YAML |
cv::FileStorage::MEMORY);
}
std::map<std::string, std::string> config;
if (!load_config.empty()) {
loadConfig(load_config, config);
}
// NB: Takes priority over config from file
if (!cached_dir.empty()) {
config =
std::map<std::string, std::string>{{"CACHE_DIR", cached_dir}};
}
const double work_time_ms =
check_and_read<double>(fs, "work_time", "Config");
if (work_time_ms < 0) {
throw std::logic_error("work_time must be positive");
}
auto pipelines_fn = check_and_get_fn(fs, "Pipelines", "Config");
if (!pipelines_fn.isMap()) {
throw std::logic_error("Pipelines field must be a map");
}
auto exec_list = !exec_str.empty() ? parseExecList(exec_str)
: pipelines_fn.keys();
std::vector<Pipeline::Ptr> pipelines;
pipelines.reserve(exec_list.size());
// NB: Build pipelines based on config information
PipelineBuilder builder;
for (const auto& name : exec_list) {
const auto& pl_fn = check_and_get_fn(pipelines_fn, name, "Pipelines");
builder.setName(name);
// NB: Set source
{
const auto& src_fn = check_and_get_fn(pl_fn, "source", name);
auto src_name =
check_and_read<std::string>(src_fn, "name", "source");
auto latency =
check_and_read<double>(src_fn, "latency", "source");
auto output =
check_and_read<OutputDescr>(src_fn, "output", "source");
// NB: In case BENCHMARK mode sources work with zero latency.
if (app_mode == AppMode::BENCHMARK) {
latency = 0.0;
}
auto src = std::make_shared<DummySource>(latency, output, drop_frames);
builder.setSource(src_name, src);
}
const auto& nodes_fn = check_and_get_fn(pl_fn, "nodes", name);
if (!nodes_fn.isSeq()) {
throw std::logic_error("nodes in " + name + " must be a sequence");
}
for (auto node_fn : nodes_fn) {
auto call_params = read<CallParams>(node_fn);
auto node_type =
check_and_read<std::string>(node_fn, "type", "node");
if (node_type == "Dummy") {
builder.addDummy(call_params, read<DummyParams>(node_fn));
} else if (node_type == "Infer") {
auto infer_params = read<InferParams>(node_fn);
infer_params.config = config;
builder.addInfer(call_params, infer_params);
} else {
throw std::logic_error("Unsupported node type: " + node_type);
}
}
const auto edges_fn = check_and_get_fn(pl_fn, "edges", name);
if (!edges_fn.isSeq()) {
throw std::logic_error("edges in " + name + " must be a sequence");
}
for (auto edge_fn : edges_fn) {
auto edge = read<Edge>(edge_fn);
builder.addEdge(edge);
}
auto cfg_pl_mode = readOpt<std::string>(pl_fn["mode"]);
// NB: Pipeline mode from config takes priority over cmd.
auto pl_mode = cfg_pl_mode.has_value()
? strToPLMode(cfg_pl_mode.value()) : cmd_pl_mode;
// NB: Using drop_frames with streaming pipelines will follow to
// incorrect performance results.
if (drop_frames && pl_mode == PLMode::STREAMING) {
throw std::logic_error(
"--drop_frames option is supported only for pipelines in \"regular\" mode");
}
builder.setMode(pl_mode);
// NB: Queue capacity from config takes priority over cmd.
auto config_qc = readOpt<int>(pl_fn["queue_capacity"]);
auto queue_capacity = config_qc.has_value() ? config_qc.value() : qc;
// NB: 0 is special constant that means
// queue capacity should be calculated automatically.
if (queue_capacity != 0) {
builder.setQueueCapacity(queue_capacity);
}
auto dump = readOpt<std::string>(pl_fn["dump"]);
if (dump) {
builder.setDumpFilePath(dump.value());
}
pipelines.emplace_back(builder.build());
}
// NB: Compille pipelines
for (size_t i = 0; i < pipelines.size(); ++i) {
pipelines[i]->compile();
}
// NB: Execute pipelines
std::vector<std::exception_ptr> eptrs(pipelines.size(), nullptr);
std::vector<std::thread> threads(pipelines.size());
for (size_t i = 0; i < pipelines.size(); ++i) {
threads[i] = std::thread([&, i]() {
try {
pipelines[i]->run(work_time_ms);
} catch (...) {
eptrs[i] = std::current_exception();
}
});
}
std::ofstream file;
if (!log_file.empty()) {
file.open(log_file);
}
for (size_t i = 0; i < threads.size(); ++i) {
threads[i].join();
}
for (size_t i = 0; i < threads.size(); ++i) {
if (eptrs[i] != nullptr) {
try {
std::rethrow_exception(eptrs[i]);
} catch (std::exception& e) {
throw std::logic_error(pipelines[i]->name() + " failed: " + e.what());
}
}
if (file.is_open()) {
file << pipelines[i]->report().toStr(true) << std::endl;
}
std::cout << pipelines[i]->report().toStr() << std::endl;
}
} catch (const std::exception& e) {
std::cout << e.what() << std::endl;
throw;
}
return 0;
}