Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

172 lines
4.7 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html
#include "test_precomp.hpp"
namespace testUtil
{
cv::RNG rng(/*std::time(0)*/0);
const float sigma = 1.f;
const float pointsMaxX = 500.f;
const float pointsMaxY = 500.f;
const int testRun = 5000;
void generatePoints(cv::Mat points);
void addNoise(cv::Mat points);
cv::Mat generateTransform(const cv::videostab::MotionModel model);
double performTest(const cv::videostab::MotionModel model, int size);
}
void testUtil::generatePoints(cv::Mat points)
{
CV_Assert(!points.empty());
for(int i = 0; i < points.cols; ++i)
{
points.at<float>(0, i) = rng.uniform(0.f, pointsMaxX);
points.at<float>(1, i) = rng.uniform(0.f, pointsMaxY);
points.at<float>(2, i) = 1.f;
}
}
void testUtil::addNoise(cv::Mat points)
{
CV_Assert(!points.empty());
for(int i = 0; i < points.cols; i++)
{
points.at<float>(0, i) += static_cast<float>(rng.gaussian(sigma));
points.at<float>(1, i) += static_cast<float>(rng.gaussian(sigma));
}
}
cv::Mat testUtil::generateTransform(const cv::videostab::MotionModel model)
{
/*----------Params----------*/
const float minAngle = 0.f, maxAngle = static_cast<float>(CV_PI);
const float minScale = 0.5f, maxScale = 2.f;
const float maxTranslation = 100.f;
const float affineCoeff = 3.f;
/*----------Params----------*/
cv::Mat transform = cv::Mat::eye(3, 3, CV_32F);
if(model != cv::videostab::MM_ROTATION)
{
transform.at<float>(0,2) = rng.uniform(-maxTranslation, maxTranslation);
transform.at<float>(1,2) = rng.uniform(-maxTranslation, maxTranslation);
}
if(model != cv::videostab::MM_AFFINE)
{
if(model != cv::videostab::MM_TRANSLATION_AND_SCALE &&
model != cv::videostab::MM_TRANSLATION)
{
const float angle = rng.uniform(minAngle, maxAngle);
transform.at<float>(1,1) = transform.at<float>(0,0) = std::cos(angle);
transform.at<float>(0,1) = std::sin(angle);
transform.at<float>(1,0) = -transform.at<float>(0,1);
}
if(model == cv::videostab::MM_TRANSLATION_AND_SCALE ||
model == cv::videostab::MM_SIMILARITY)
{
const float scale = rng.uniform(minScale, maxScale);
transform.at<float>(0,0) *= scale;
transform.at<float>(1,1) *= scale;
}
}
else
{
transform.at<float>(0,0) = rng.uniform(-affineCoeff, affineCoeff);
transform.at<float>(0,1) = rng.uniform(-affineCoeff, affineCoeff);
transform.at<float>(1,0) = rng.uniform(-affineCoeff, affineCoeff);
transform.at<float>(1,1) = rng.uniform(-affineCoeff, affineCoeff);
}
return transform;
}
double testUtil::performTest(const cv::videostab::MotionModel model, int size)
{
cv::Ptr<cv::videostab::MotionEstimatorRansacL2> estimator = cv::makePtr<cv::videostab::MotionEstimatorRansacL2>(model);
estimator->setRansacParams(cv::videostab::RansacParams(size, 3.f*testUtil::sigma /*3 sigma rule*/, 0.5f, 0.5f));
double disparity = 0.;
for(int attempt = 0; attempt < testUtil::testRun; attempt++)
{
const cv::Mat transform = testUtil::generateTransform(model);
const int pointsNumber = testUtil::rng.uniform(10, 100);
cv::Mat points(3, pointsNumber, CV_32F);
testUtil::generatePoints(points);
cv::Mat transformedPoints = transform * points;
testUtil::addNoise(transformedPoints);
const cv::Mat src = points.rowRange(0,2).t();
const cv::Mat dst = transformedPoints.rowRange(0,2).t();
bool isOK = false;
const cv::Mat estTransform = estimator->estimate(src.reshape(2), dst.reshape(2), &isOK);
CV_Assert(isOK);
const cv::Mat testPoints = estTransform * points;
const double norm = cv::norm(testPoints, transformedPoints, cv::NORM_INF);
disparity = std::max(disparity, norm);
}
return disparity;
}
TEST(Regression, MM_TRANSLATION)
{
EXPECT_LT(testUtil::performTest(cv::videostab::MM_TRANSLATION, 2), 7.f);
}
TEST(Regression, MM_TRANSLATION_AND_SCALE)
{
EXPECT_LT(testUtil::performTest(cv::videostab::MM_TRANSLATION_AND_SCALE, 3), 7.f);
}
TEST(Regression, MM_ROTATION)
{
EXPECT_LT(testUtil::performTest(cv::videostab::MM_ROTATION, 2), 7.f);
}
TEST(Regression, MM_RIGID)
{
EXPECT_LT(testUtil::performTest(cv::videostab::MM_RIGID, 3), 7.f);
}
TEST(Regression, MM_SIMILARITY)
{
EXPECT_LT(testUtil::performTest(cv::videostab::MM_SIMILARITY, 4), 7.f);
}
TEST(Regression, MM_AFFINE)
{
EXPECT_LT(testUtil::performTest(cv::videostab::MM_AFFINE, 6), 9.f);
}