mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
172 lines
4.7 KiB
172 lines
4.7 KiB
8 years ago
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html
|
||
|
|
||
|
#include "test_precomp.hpp"
|
||
|
|
||
|
namespace testUtil
|
||
|
{
|
||
|
|
||
|
cv::RNG rng(/*std::time(0)*/0);
|
||
|
|
||
|
const float sigma = 1.f;
|
||
|
const float pointsMaxX = 500.f;
|
||
|
const float pointsMaxY = 500.f;
|
||
|
const int testRun = 5000;
|
||
|
|
||
|
void generatePoints(cv::Mat points);
|
||
|
void addNoise(cv::Mat points);
|
||
|
|
||
|
cv::Mat generateTransform(const cv::videostab::MotionModel model);
|
||
|
|
||
|
double performTest(const cv::videostab::MotionModel model, int size);
|
||
|
|
||
|
}
|
||
|
|
||
|
void testUtil::generatePoints(cv::Mat points)
|
||
|
{
|
||
|
CV_Assert(!points.empty());
|
||
|
for(int i = 0; i < points.cols; ++i)
|
||
|
{
|
||
|
points.at<float>(0, i) = rng.uniform(0.f, pointsMaxX);
|
||
|
points.at<float>(1, i) = rng.uniform(0.f, pointsMaxY);
|
||
|
points.at<float>(2, i) = 1.f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void testUtil::addNoise(cv::Mat points)
|
||
|
{
|
||
|
CV_Assert(!points.empty());
|
||
|
for(int i = 0; i < points.cols; i++)
|
||
|
{
|
||
|
points.at<float>(0, i) += static_cast<float>(rng.gaussian(sigma));
|
||
|
points.at<float>(1, i) += static_cast<float>(rng.gaussian(sigma));
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
cv::Mat testUtil::generateTransform(const cv::videostab::MotionModel model)
|
||
|
{
|
||
|
/*----------Params----------*/
|
||
|
const float minAngle = 0.f, maxAngle = static_cast<float>(CV_PI);
|
||
|
const float minScale = 0.5f, maxScale = 2.f;
|
||
|
const float maxTranslation = 100.f;
|
||
|
const float affineCoeff = 3.f;
|
||
|
/*----------Params----------*/
|
||
|
|
||
|
cv::Mat transform = cv::Mat::eye(3, 3, CV_32F);
|
||
|
|
||
|
if(model != cv::videostab::MM_ROTATION)
|
||
|
{
|
||
|
transform.at<float>(0,2) = rng.uniform(-maxTranslation, maxTranslation);
|
||
|
transform.at<float>(1,2) = rng.uniform(-maxTranslation, maxTranslation);
|
||
|
}
|
||
|
|
||
|
if(model != cv::videostab::MM_AFFINE)
|
||
|
{
|
||
|
|
||
|
if(model != cv::videostab::MM_TRANSLATION_AND_SCALE &&
|
||
|
model != cv::videostab::MM_TRANSLATION)
|
||
|
{
|
||
|
const float angle = rng.uniform(minAngle, maxAngle);
|
||
|
|
||
|
transform.at<float>(1,1) = transform.at<float>(0,0) = std::cos(angle);
|
||
|
transform.at<float>(0,1) = std::sin(angle);
|
||
|
transform.at<float>(1,0) = -transform.at<float>(0,1);
|
||
|
|
||
|
}
|
||
|
|
||
|
if(model == cv::videostab::MM_TRANSLATION_AND_SCALE ||
|
||
|
model == cv::videostab::MM_SIMILARITY)
|
||
|
{
|
||
|
const float scale = rng.uniform(minScale, maxScale);
|
||
|
|
||
|
transform.at<float>(0,0) *= scale;
|
||
|
transform.at<float>(1,1) *= scale;
|
||
|
|
||
|
}
|
||
|
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
transform.at<float>(0,0) = rng.uniform(-affineCoeff, affineCoeff);
|
||
|
transform.at<float>(0,1) = rng.uniform(-affineCoeff, affineCoeff);
|
||
|
transform.at<float>(1,0) = rng.uniform(-affineCoeff, affineCoeff);
|
||
|
transform.at<float>(1,1) = rng.uniform(-affineCoeff, affineCoeff);
|
||
|
}
|
||
|
|
||
|
return transform;
|
||
|
}
|
||
|
|
||
|
|
||
|
double testUtil::performTest(const cv::videostab::MotionModel model, int size)
|
||
|
{
|
||
|
cv::Ptr<cv::videostab::MotionEstimatorRansacL2> estimator = cv::makePtr<cv::videostab::MotionEstimatorRansacL2>(model);
|
||
|
|
||
|
estimator->setRansacParams(cv::videostab::RansacParams(size, 3.f*testUtil::sigma /*3 sigma rule*/, 0.5f, 0.5f));
|
||
|
|
||
|
double disparity = 0.;
|
||
|
|
||
|
for(int attempt = 0; attempt < testUtil::testRun; attempt++)
|
||
|
{
|
||
|
const cv::Mat transform = testUtil::generateTransform(model);
|
||
|
|
||
|
const int pointsNumber = testUtil::rng.uniform(10, 100);
|
||
|
|
||
|
cv::Mat points(3, pointsNumber, CV_32F);
|
||
|
|
||
|
testUtil::generatePoints(points);
|
||
|
|
||
|
cv::Mat transformedPoints = transform * points;
|
||
|
|
||
|
testUtil::addNoise(transformedPoints);
|
||
|
|
||
|
const cv::Mat src = points.rowRange(0,2).t();
|
||
|
const cv::Mat dst = transformedPoints.rowRange(0,2).t();
|
||
|
|
||
|
bool isOK = false;
|
||
|
const cv::Mat estTransform = estimator->estimate(src.reshape(2), dst.reshape(2), &isOK);
|
||
|
|
||
|
CV_Assert(isOK);
|
||
|
const cv::Mat testPoints = estTransform * points;
|
||
|
|
||
|
const double norm = cv::norm(testPoints, transformedPoints, cv::NORM_INF);
|
||
|
|
||
|
disparity = std::max(disparity, norm);
|
||
|
}
|
||
|
|
||
|
return disparity;
|
||
|
|
||
|
}
|
||
|
|
||
|
TEST(Regression, MM_TRANSLATION)
|
||
|
{
|
||
|
EXPECT_LT(testUtil::performTest(cv::videostab::MM_TRANSLATION, 2), 7.f);
|
||
|
}
|
||
|
|
||
|
TEST(Regression, MM_TRANSLATION_AND_SCALE)
|
||
|
{
|
||
|
EXPECT_LT(testUtil::performTest(cv::videostab::MM_TRANSLATION_AND_SCALE, 3), 7.f);
|
||
|
}
|
||
|
|
||
|
TEST(Regression, MM_ROTATION)
|
||
|
{
|
||
|
EXPECT_LT(testUtil::performTest(cv::videostab::MM_ROTATION, 2), 7.f);
|
||
|
}
|
||
|
|
||
|
TEST(Regression, MM_RIGID)
|
||
|
{
|
||
|
EXPECT_LT(testUtil::performTest(cv::videostab::MM_RIGID, 3), 7.f);
|
||
|
}
|
||
|
|
||
|
TEST(Regression, MM_SIMILARITY)
|
||
|
{
|
||
|
EXPECT_LT(testUtil::performTest(cv::videostab::MM_SIMILARITY, 4), 7.f);
|
||
|
}
|
||
|
|
||
|
TEST(Regression, MM_AFFINE)
|
||
|
{
|
||
|
EXPECT_LT(testUtil::performTest(cv::videostab::MM_AFFINE, 6), 9.f);
|
||
|
}
|