|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
|
|
|
|
// Digital Ltd. LLC
|
|
|
|
//
|
|
|
|
// All rights reserved.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
|
|
// in the documentation and/or other materials provided with the
|
|
|
|
// distribution.
|
|
|
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|
|
|
// its contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
//
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef INCLUDED_IMATHLINEALGO_H
|
|
|
|
#define INCLUDED_IMATHLINEALGO_H
|
|
|
|
|
|
|
|
//------------------------------------------------------------------
|
|
|
|
//
|
|
|
|
// This file contains algorithms applied to or in conjunction
|
|
|
|
// with lines (Imath::Line). These algorithms may require
|
|
|
|
// more headers to compile. The assumption made is that these
|
|
|
|
// functions are called much less often than the basic line
|
|
|
|
// functions or these functions require more support classes
|
|
|
|
//
|
|
|
|
// Contains:
|
|
|
|
//
|
|
|
|
// bool closestPoints(const Line<T>& line1,
|
|
|
|
// const Line<T>& line2,
|
|
|
|
// Vec3<T>& point1,
|
|
|
|
// Vec3<T>& point2)
|
|
|
|
//
|
|
|
|
// bool intersect( const Line3<T> &line,
|
|
|
|
// const Vec3<T> &v0,
|
|
|
|
// const Vec3<T> &v1,
|
|
|
|
// const Vec3<T> &v2,
|
|
|
|
// Vec3<T> &pt,
|
|
|
|
// Vec3<T> &barycentric,
|
|
|
|
// bool &front)
|
|
|
|
//
|
|
|
|
// V3f
|
|
|
|
// closestVertex(const Vec3<T> &v0,
|
|
|
|
// const Vec3<T> &v1,
|
|
|
|
// const Vec3<T> &v2,
|
|
|
|
// const Line3<T> &l)
|
|
|
|
//
|
|
|
|
// V3f
|
|
|
|
// rotatePoint(const Vec3<T> p, Line3<T> l, float angle)
|
|
|
|
//
|
|
|
|
//------------------------------------------------------------------
|
|
|
|
|
|
|
|
#include "ImathLine.h"
|
|
|
|
#include "ImathVecAlgo.h"
|
|
|
|
#include "ImathFun.h"
|
|
|
|
|
|
|
|
namespace Imath {
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
bool
|
|
|
|
closestPoints
|
|
|
|
(const Line3<T>& line1,
|
|
|
|
const Line3<T>& line2,
|
|
|
|
Vec3<T>& point1,
|
|
|
|
Vec3<T>& point2)
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Compute point1 and point2 such that point1 is on line1, point2
|
|
|
|
// is on line2 and the distance between point1 and point2 is minimal.
|
|
|
|
// This function returns true if point1 and point2 can be computed,
|
|
|
|
// or false if line1 and line2 are parallel or nearly parallel.
|
|
|
|
// This function assumes that line1.dir and line2.dir are normalized.
|
|
|
|
//
|
|
|
|
|
|
|
|
Vec3<T> w = line1.pos - line2.pos;
|
|
|
|
T d1w = line1.dir ^ w;
|
|
|
|
T d2w = line2.dir ^ w;
|
|
|
|
T d1d2 = line1.dir ^ line2.dir;
|
|
|
|
T n1 = d1d2 * d2w - d1w;
|
|
|
|
T n2 = d2w - d1d2 * d1w;
|
|
|
|
T d = 1 - d1d2 * d1d2;
|
|
|
|
T absD = abs (d);
|
|
|
|
|
|
|
|
if ((absD > 1) ||
|
|
|
|
(abs (n1) < limits<T>::max() * absD &&
|
|
|
|
abs (n2) < limits<T>::max() * absD))
|
|
|
|
{
|
|
|
|
point1 = line1 (n1 / d);
|
|
|
|
point2 = line2 (n2 / d);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
bool
|
|
|
|
intersect
|
|
|
|
(const Line3<T> &line,
|
|
|
|
const Vec3<T> &v0,
|
|
|
|
const Vec3<T> &v1,
|
|
|
|
const Vec3<T> &v2,
|
|
|
|
Vec3<T> &pt,
|
|
|
|
Vec3<T> &barycentric,
|
|
|
|
bool &front)
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Given a line and a triangle (v0, v1, v2), the intersect() function
|
|
|
|
// finds the intersection of the line and the plane that contains the
|
|
|
|
// triangle.
|
|
|
|
//
|
|
|
|
// If the intersection point cannot be computed, either because the
|
|
|
|
// line and the triangle's plane are nearly parallel or because the
|
|
|
|
// triangle's area is very small, intersect() returns false.
|
|
|
|
//
|
|
|
|
// If the intersection point is outside the triangle, intersect
|
|
|
|
// returns false.
|
|
|
|
//
|
|
|
|
// If the intersection point, pt, is inside the triangle, intersect()
|
|
|
|
// computes a front-facing flag and the barycentric coordinates of
|
|
|
|
// the intersection point, and returns true.
|
|
|
|
//
|
|
|
|
// The front-facing flag is true if the dot product of the triangle's
|
|
|
|
// normal, (v2-v1)%(v1-v0), and the line's direction is negative.
|
|
|
|
//
|
|
|
|
// The barycentric coordinates have the following property:
|
|
|
|
//
|
|
|
|
// pt = v0 * barycentric.x + v1 * barycentric.y + v2 * barycentric.z
|
|
|
|
//
|
|
|
|
|
|
|
|
Vec3<T> edge0 = v1 - v0;
|
|
|
|
Vec3<T> edge1 = v2 - v1;
|
|
|
|
Vec3<T> normal = edge1 % edge0;
|
|
|
|
|
|
|
|
T l = normal.length();
|
|
|
|
|
|
|
|
if (l != 0)
|
|
|
|
normal /= l;
|
|
|
|
else
|
|
|
|
return false; // zero-area triangle
|
|
|
|
|
|
|
|
//
|
|
|
|
// d is the distance of line.pos from the plane that contains the triangle.
|
|
|
|
// The intersection point is at line.pos + (d/nd) * line.dir.
|
|
|
|
//
|
|
|
|
|
|
|
|
T d = normal ^ (v0 - line.pos);
|
|
|
|
T nd = normal ^ line.dir;
|
|
|
|
|
|
|
|
if (abs (nd) > 1 || abs (d) < limits<T>::max() * abs (nd))
|
|
|
|
pt = line (d / nd);
|
|
|
|
else
|
|
|
|
return false; // line and plane are nearly parallel
|
|
|
|
|
|
|
|
//
|
|
|
|
// Compute the barycentric coordinates of the intersection point.
|
|
|
|
// The intersection is inside the triangle if all three barycentric
|
|
|
|
// coordinates are between zero and one.
|
|
|
|
//
|
|
|
|
|
|
|
|
{
|
|
|
|
Vec3<T> en = edge0.normalized();
|
|
|
|
Vec3<T> a = pt - v0;
|
|
|
|
Vec3<T> b = v2 - v0;
|
|
|
|
Vec3<T> c = (a - en * (en ^ a));
|
|
|
|
Vec3<T> d = (b - en * (en ^ b));
|
|
|
|
T e = c ^ d;
|
|
|
|
T f = d ^ d;
|
|
|
|
|
|
|
|
if (e >= 0 && e <= f)
|
|
|
|
barycentric.z = e / f;
|
|
|
|
else
|
|
|
|
return false; // outside
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
Vec3<T> en = edge1.normalized();
|
|
|
|
Vec3<T> a = pt - v1;
|
|
|
|
Vec3<T> b = v0 - v1;
|
|
|
|
Vec3<T> c = (a - en * (en ^ a));
|
|
|
|
Vec3<T> d = (b - en * (en ^ b));
|
|
|
|
T e = c ^ d;
|
|
|
|
T f = d ^ d;
|
|
|
|
|
|
|
|
if (e >= 0 && e <= f)
|
|
|
|
barycentric.x = e / f;
|
|
|
|
else
|
|
|
|
return false; // outside
|
|
|
|
}
|
|
|
|
|
|
|
|
barycentric.y = 1 - barycentric.x - barycentric.z;
|
|
|
|
|
|
|
|
if (barycentric.y < 0)
|
|
|
|
return false; // outside
|
|
|
|
|
|
|
|
front = ((line.dir ^ normal) < 0);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
Vec3<T>
|
|
|
|
closestVertex
|
|
|
|
(const Vec3<T> &v0,
|
|
|
|
const Vec3<T> &v1,
|
|
|
|
const Vec3<T> &v2,
|
|
|
|
const Line3<T> &l)
|
|
|
|
{
|
|
|
|
Vec3<T> nearest = v0;
|
|
|
|
T neardot = (v0 - l.closestPointTo(v0)).length2();
|
|
|
|
|
|
|
|
T tmp = (v1 - l.closestPointTo(v1)).length2();
|
|
|
|
|
|
|
|
if (tmp < neardot)
|
|
|
|
{
|
|
|
|
neardot = tmp;
|
|
|
|
nearest = v1;
|
|
|
|
}
|
|
|
|
|
|
|
|
tmp = (v2 - l.closestPointTo(v2)).length2();
|
|
|
|
if (tmp < neardot)
|
|
|
|
{
|
|
|
|
neardot = tmp;
|
|
|
|
nearest = v2;
|
|
|
|
}
|
|
|
|
|
|
|
|
return nearest;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <class T>
|
|
|
|
Vec3<T>
|
|
|
|
rotatePoint (const Vec3<T> p, Line3<T> l, T angle)
|
|
|
|
{
|
|
|
|
//
|
|
|
|
// Rotate the point p around the line l by the given angle.
|
|
|
|
//
|
|
|
|
|
|
|
|
//
|
|
|
|
// Form a coordinate frame with <x,y,a>. The rotation is the in xy
|
|
|
|
// plane.
|
|
|
|
//
|
|
|
|
|
|
|
|
Vec3<T> q = l.closestPointTo(p);
|
|
|
|
Vec3<T> x = p - q;
|
|
|
|
T radius = x.length();
|
|
|
|
|
|
|
|
x.normalize();
|
|
|
|
Vec3<T> y = (x % l.dir).normalize();
|
|
|
|
|
|
|
|
T cosangle = Math<T>::cos(angle);
|
|
|
|
T sinangle = Math<T>::sin(angle);
|
|
|
|
|
|
|
|
Vec3<T> r = q + x * radius * cosangle + y * radius * sinangle;
|
|
|
|
|
|
|
|
return r;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} // namespace Imath
|
|
|
|
|
|
|
|
#endif
|