|
|
|
#!/usr/bin/env python
|
|
|
|
|
|
|
|
'''
|
|
|
|
sample for disctrete fourier transform (dft)
|
|
|
|
|
|
|
|
USAGE:
|
|
|
|
dft.py <image_file>
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
|
|
# Python 2/3 compatibility
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import sys
|
|
|
|
|
|
|
|
|
|
|
|
def shift_dft(src, dst=None):
|
|
|
|
'''
|
|
|
|
Rearrange the quadrants of Fourier image so that the origin is at
|
|
|
|
the image center. Swaps quadrant 1 with 3, and 2 with 4.
|
|
|
|
|
|
|
|
src and dst arrays must be equal size & type
|
|
|
|
'''
|
|
|
|
|
|
|
|
if dst is None:
|
|
|
|
dst = np.empty(src.shape, src.dtype)
|
|
|
|
elif src.shape != dst.shape:
|
|
|
|
raise ValueError("src and dst must have equal sizes")
|
|
|
|
elif src.dtype != dst.dtype:
|
|
|
|
raise TypeError("src and dst must have equal types")
|
|
|
|
|
|
|
|
if src is dst:
|
|
|
|
ret = np.empty(src.shape, src.dtype)
|
|
|
|
else:
|
|
|
|
ret = dst
|
|
|
|
|
|
|
|
h, w = src.shape[:2]
|
|
|
|
|
|
|
|
cx1 = cx2 = w/2
|
|
|
|
cy1 = cy2 = h/2
|
|
|
|
|
|
|
|
# if the size is odd, then adjust the bottom/right quadrants
|
|
|
|
if w % 2 != 0:
|
|
|
|
cx2 += 1
|
|
|
|
if h % 2 != 0:
|
|
|
|
cy2 += 1
|
|
|
|
|
|
|
|
# swap quadrants
|
|
|
|
|
|
|
|
# swap q1 and q3
|
|
|
|
ret[h-cy1:, w-cx1:] = src[0:cy1 , 0:cx1 ] # q1 -> q3
|
|
|
|
ret[0:cy2 , 0:cx2 ] = src[h-cy2:, w-cx2:] # q3 -> q1
|
|
|
|
|
|
|
|
# swap q2 and q4
|
|
|
|
ret[0:cy2 , w-cx2:] = src[h-cy2:, 0:cx2 ] # q2 -> q4
|
|
|
|
ret[h-cy1:, 0:cx1 ] = src[0:cy1 , w-cx1:] # q4 -> q2
|
|
|
|
|
|
|
|
if src is dst:
|
|
|
|
dst[:,:] = ret
|
|
|
|
|
|
|
|
return dst
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
|
|
if len(sys.argv) > 1:
|
|
|
|
im = cv2.imread(sys.argv[1])
|
|
|
|
else:
|
|
|
|
im = cv2.imread('../data/baboon.jpg')
|
|
|
|
print("usage : python dft.py <image_file>")
|
|
|
|
|
|
|
|
# convert to grayscale
|
|
|
|
im = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
|
|
|
|
h, w = im.shape[:2]
|
|
|
|
|
|
|
|
realInput = im.astype(np.float64)
|
|
|
|
|
|
|
|
# perform an optimally sized dft
|
|
|
|
dft_M = cv2.getOptimalDFTSize(w)
|
|
|
|
dft_N = cv2.getOptimalDFTSize(h)
|
|
|
|
|
|
|
|
# copy A to dft_A and pad dft_A with zeros
|
|
|
|
dft_A = np.zeros((dft_N, dft_M, 2), dtype=np.float64)
|
|
|
|
dft_A[:h, :w, 0] = realInput
|
|
|
|
|
|
|
|
# no need to pad bottom part of dft_A with zeros because of
|
|
|
|
# use of nonzeroRows parameter in cv2.dft()
|
|
|
|
cv2.dft(dft_A, dst=dft_A, nonzeroRows=h)
|
|
|
|
|
|
|
|
cv2.imshow("win", im)
|
|
|
|
|
|
|
|
# Split fourier into real and imaginary parts
|
|
|
|
image_Re, image_Im = cv2.split(dft_A)
|
|
|
|
|
|
|
|
# Compute the magnitude of the spectrum Mag = sqrt(Re^2 + Im^2)
|
|
|
|
magnitude = cv2.sqrt(image_Re**2.0 + image_Im**2.0)
|
|
|
|
|
|
|
|
# Compute log(1 + Mag)
|
|
|
|
log_spectrum = cv2.log(1.0 + magnitude)
|
|
|
|
|
|
|
|
# Rearrange the quadrants of Fourier image so that the origin is at
|
|
|
|
# the image center
|
|
|
|
shift_dft(log_spectrum, log_spectrum)
|
|
|
|
|
|
|
|
# normalize and display the results as rgb
|
|
|
|
cv2.normalize(log_spectrum, log_spectrum, 0.0, 1.0, cv2.NORM_MINMAX)
|
|
|
|
cv2.imshow("magnitude", log_spectrum)
|
|
|
|
|
|
|
|
cv2.waitKey(0)
|
|
|
|
cv2.destroyAllWindows()
|