Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

95 lines
3.8 KiB

#!/usr/bin/env python
# Python 2/3 compatibility
from __future__ import print_function
import os, numpy as np
import cv2 as cv
from tests_common import NewOpenCVTests
class aruco_objdetect_test(NewOpenCVTests):
def test_idsAccessibility(self):
ids = np.arange(17)
rev_ids = ids[::-1]
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_5X5_250)
board = cv.aruco.CharucoBoard_create(7, 5, 1, 0.5, aruco_dict)
np.testing.assert_array_equal(board.getIds().squeeze(), ids)
board = cv.aruco.CharucoBoard_create(7, 5, 1, 0.5, aruco_dict, rev_ids)
np.testing.assert_array_equal(board.getIds().squeeze(), rev_ids)
board = cv.aruco.CharucoBoard_create(7, 5, 1, 0.5, aruco_dict, ids)
np.testing.assert_array_equal(board.getIds().squeeze(), ids)
def test_identify(self):
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50)
expected_idx = 9
expected_rotation = 2
bit_marker = np.array([[0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 1, 1], [0, 0, 1, 1]], dtype=np.uint8)
check, idx, rotation = aruco_dict.identify(bit_marker, 0)
self.assertTrue(check, True)
self.assertEqual(idx, expected_idx)
self.assertEqual(rotation, expected_rotation)
def test_getDistanceToId(self):
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_50)
idx = 7
rotation = 3
bit_marker = np.array([[0, 1, 0, 1], [0, 1, 1, 1], [1, 1, 0, 0], [0, 1, 0, 0]], dtype=np.uint8)
dist = aruco_dict.getDistanceToId(bit_marker, idx)
self.assertEqual(dist, 0)
def test_aruco_detector(self):
aruco_params = cv.aruco.DetectorParameters()
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_250)
aruco_detector = cv.aruco.ArucoDetector(aruco_dict, aruco_params)
id = 2
marker_size = 100
offset = 10
img_marker = cv.aruco.generateImageMarker(aruco_dict, id, marker_size, aruco_params.markerBorderBits)
img_marker = np.pad(img_marker, pad_width=offset, mode='constant', constant_values=255)
gold_corners = np.array([[offset, offset],[marker_size+offset-1.0,offset],
[marker_size+offset-1.0,marker_size+offset-1.0],
[offset, marker_size+offset-1.0]], dtype=np.float32)
corners, ids, rejected = aruco_detector.detectMarkers(img_marker)
self.assertEqual(1, len(ids))
self.assertEqual(id, ids[0])
for i in range(0, len(corners)):
np.testing.assert_array_equal(gold_corners, corners[i].reshape(4, 2))
def test_aruco_detector_refine(self):
aruco_params = cv.aruco.DetectorParameters()
aruco_dict = cv.aruco.getPredefinedDictionary(cv.aruco.DICT_4X4_250)
aruco_detector = cv.aruco.ArucoDetector(aruco_dict, aruco_params)
board_size = (3, 4)
board = cv.aruco.GridBoard_create(board_size[0], board_size[1], 5.0, 1.0, aruco_dict)
board_image = board.generateImage((board_size[0]*50, board_size[1]*50), marginSize=10)
corners, ids, rejected = aruco_detector.detectMarkers(board_image)
self.assertEqual(board_size[0]*board_size[1], len(ids))
part_corners, part_ids, part_rejected = corners[:-1], ids[:-1], list(rejected)
part_rejected.append(corners[-1])
refine_corners, refine_ids, refine_rejected, recovered_ids = aruco_detector.refineDetectedMarkers(board_image, board, part_corners, part_ids, part_rejected)
self.assertEqual(board_size[0] * board_size[1], len(refine_ids))
self.assertEqual(1, len(recovered_ids))
self.assertEqual(ids[-1], refine_ids[-1])
self.assertEqual((1, 4, 2), refine_corners[0].shape)
np.testing.assert_array_equal(corners, refine_corners)
if __name__ == '__main__':
NewOpenCVTests.bootstrap()