Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

827 lines
18 KiB

#include <stdexcept>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <opencv2/gpu/gpu.hpp>
#include "performance.h"
using namespace std;
using namespace cv;
void InitMatchTemplate()
{
Mat src; gen(src, 500, 500, CV_32F, 0, 1);
Mat templ; gen(templ, 500, 500, CV_32F, 0, 1);
gpu::GpuMat d_src(src), d_templ(templ), d_dst;
gpu::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
}
TEST(matchTemplate)
{
InitMatchTemplate();
Mat src, templ, dst;
gen(src, 3000, 3000, CV_32F, 0, 1);
gpu::GpuMat d_src(src), d_templ, d_dst;
for (int templ_size = 5; templ_size < 200; templ_size *= 5)
{
SUBTEST << "src " << src.rows << ", templ " << templ_size << ", 32F, CCORR";
gen(templ, templ_size, templ_size, CV_32F, 0, 1);
dst.create(src.rows - templ.rows + 1, src.cols - templ.cols + 1, CV_32F);
CPU_ON;
matchTemplate(src, templ, dst, CV_TM_CCORR);
CPU_OFF;
d_templ = templ;
d_dst.create(d_src.rows - d_templ.rows + 1, d_src.cols - d_templ.cols + 1, CV_32F);
GPU_ON;
gpu::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
GPU_OFF;
}
}
TEST(minMaxLoc)
{
Mat src;
gpu::GpuMat d_src;
double min_val, max_val;
Point min_loc, max_loc;
for (int size = 2000; size <= 8000; size *= 2)
{
SUBTEST << "src " << size << ", 32F, no mask";
gen(src, size, size, CV_32F, 0, 1);
CPU_ON;
minMaxLoc(src, &min_val, &max_val, &min_loc, &max_loc);
CPU_OFF;
d_src = src;
GPU_ON;
gpu::minMaxLoc(d_src, &min_val, &max_val, &min_loc, &max_loc);
GPU_OFF;
}
}
TEST(remap)
{
Mat src, dst, xmap, ymap;
gpu::GpuMat d_src, d_dst, d_xmap, d_ymap;
for (int size = 1000; size <= 8000; size *= 2)
{
SUBTEST << "src " << size << " and 8U, 32F maps";
gen(src, size, size, CV_8UC1, 0, 256);
xmap.create(size, size, CV_32F);
ymap.create(size, size, CV_32F);
for (int i = 0; i < size; ++i)
{
float* xmap_row = xmap.ptr<float>(i);
float* ymap_row = ymap.ptr<float>(i);
for (int j = 0; j < size; ++j)
{
xmap_row[j] = (j - size * 0.5f) * 0.75f + size * 0.5f;
ymap_row[j] = (i - size * 0.5f) * 0.75f + size * 0.5f;
}
}
dst.create(xmap.size(), src.type());
CPU_ON;
remap(src, dst, xmap, ymap, INTER_LINEAR);
CPU_OFF;
d_src = src;
d_xmap = xmap;
d_ymap = ymap;
d_dst.create(d_xmap.size(), d_src.type());
GPU_ON;
gpu::remap(d_src, d_dst, d_xmap, d_ymap);
GPU_OFF;
}
}
TEST(dft)
{
Mat src, dst;
gpu::GpuMat d_src, d_dst;
for (int size = 1000; size <= 4000; size *= 2)
{
SUBTEST << "size " << size << ", 32FC2, complex-to-complex";
gen(src, size, size, CV_32FC2, Scalar::all(0), Scalar::all(1));
dst.create(src.size(), src.type());
CPU_ON;
dft(src, dst);
CPU_OFF;
d_src = src;
d_dst.create(d_src.size(), d_src.type());
GPU_ON;
gpu::dft(d_src, d_dst, Size(size, size));
GPU_OFF;
}
}
TEST(cornerHarris)
{
Mat src, dst;
gpu::GpuMat d_src, d_dst;
for (int size = 2000; size <= 4000; size *= 2)
{
SUBTEST << "size " << size << ", 32F";
gen(src, size, size, CV_32F, 0, 1);
dst.create(src.size(), src.type());
CPU_ON;
cornerHarris(src, dst, 5, 7, 0.1, BORDER_REFLECT101);
CPU_OFF;
d_src = src;
d_dst.create(src.size(), src.type());
GPU_ON;
gpu::cornerHarris(d_src, d_dst, 5, 7, 0.1, BORDER_REFLECT101);
GPU_OFF;
}
}
TEST(integral)
{
Mat src, sum;
gpu::GpuMat d_src, d_sum, d_buf;
int size = 4000;
gen(src, size, size, CV_8U, 0, 256);
sum.create(size + 1, size + 1, CV_32S);
d_src = src;
d_sum.create(size + 1, size + 1, CV_32S);
for (int i = 0; i < 5; ++i)
{
SUBTEST << "size " << size << ", 8U";
CPU_ON;
integral(src, sum);
CPU_OFF;
GPU_ON;
gpu::integralBuffered(d_src, d_sum, d_buf);
GPU_OFF;
}
}
TEST(norm)
{
Mat src;
gpu::GpuMat d_src, d_buf;
for (int size = 2000; size <= 4000; size += 1000)
{
SUBTEST << "size " << size << ", 32FC4, NORM_INF";
gen(src, size, size, CV_32FC4, Scalar::all(0), Scalar::all(1));
CPU_ON;
for (int i = 0; i < 5; ++i)
norm(src, NORM_INF);
CPU_OFF;
d_src = src;
GPU_ON;
for (int i = 0; i < 5; ++i)
gpu::norm(d_src, NORM_INF, d_buf);
GPU_OFF;
}
}
TEST(meanShift)
{
int sp = 10, sr = 10;
Mat src, dst;
gpu::GpuMat d_src, d_dst;
for (int size = 400; size <= 800; size *= 2)
{
SUBTEST << "size " << size << ", 8UC3 vs 8UC4";
gen(src, size, size, CV_8UC3, Scalar::all(0), Scalar::all(256));
dst.create(src.size(), src.type());
CPU_ON;
pyrMeanShiftFiltering(src, dst, sp, sr);
CPU_OFF;
gen(src, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256));
d_src = src;
d_dst.create(d_src.size(), d_src.type());
GPU_ON;
gpu::meanShiftFiltering(d_src, d_dst, sp, sr);
GPU_OFF;
}
}
TEST(SURF)
{
Mat src1 = imread(abspath("aloeL.jpg"), CV_LOAD_IMAGE_GRAYSCALE);
Mat src2 = imread(abspath("aloeR.jpg"), CV_LOAD_IMAGE_GRAYSCALE);
if (src1.empty()) throw runtime_error("can't open aloeL.jpg");
if (src2.empty()) throw runtime_error("can't open aloeR.jpg");
gpu::GpuMat d_src1(src1);
gpu::GpuMat d_src2(src2);
SURF surf;
vector<KeyPoint> keypoints1, keypoints2;
vector<float> descriptors1, descriptors2;
CPU_ON;
surf(src1, Mat(), keypoints1, descriptors1);
surf(src2, Mat(), keypoints2, descriptors2);
CPU_OFF;
gpu::SURF_GPU d_surf;
gpu::GpuMat d_keypoints1, d_keypoints2;
gpu::GpuMat d_descriptors1, d_descriptors2;
GPU_ON;
d_surf(d_src1, gpu::GpuMat(), d_keypoints1, d_descriptors1);
d_surf(d_src2, gpu::GpuMat(), d_keypoints2, d_descriptors2);
GPU_OFF;
}
TEST(BruteForceMatcher)
{
// Init CPU matcher
int desc_len = 128;
BruteForceMatcher< L2<float> > matcher;
Mat query;
gen(query, 3000, desc_len, CV_32F, 0, 1);
Mat train;
gen(train, 3000, desc_len, CV_32F, 0, 1);
// Init GPU matcher
gpu::BruteForceMatcher_GPU< L2<float> > d_matcher;
gpu::GpuMat d_query(query);
gpu::GpuMat d_train(train);
// Output
vector< vector<DMatch> > matches(1);
vector< vector<DMatch> > d_matches(1);
SUBTEST << "match";
CPU_ON;
matcher.match(query, train, matches[0]);
CPU_OFF;
GPU_ON;
d_matcher.match(d_query, d_train, d_matches[0]);
GPU_OFF;
SUBTEST << "knnMatch";
int knn = 10;
CPU_ON;
matcher.knnMatch(query, train, matches, knn);
CPU_OFF;
GPU_ON;
d_matcher.knnMatch(d_query, d_train, d_matches, knn);
GPU_OFF;
SUBTEST << "radiusMatch";
float max_distance = 3.8f;
CPU_ON;
matcher.radiusMatch(query, train, matches, max_distance);
CPU_OFF;
GPU_ON;
d_matcher.radiusMatch(d_query, d_train, d_matches, max_distance);
GPU_OFF;
}
TEST(magnitude)
{
Mat x, y, mag;
gpu::GpuMat d_x, d_y, d_mag;
for (int size = 2000; size <= 4000; size += 1000)
{
SUBTEST << "size " << size;
gen(x, size, size, CV_32F, 0, 1);
gen(y, size, size, CV_32F, 0, 1);
mag.create(size, size, CV_32F);
CPU_ON;
magnitude(x, y, mag);
CPU_OFF;
d_x = x;
d_y = y;
d_mag.create(size, size, CV_32F);
GPU_ON;
gpu::magnitude(d_x, d_y, d_mag);
GPU_OFF;
}
}
TEST(add)
{
Mat src1, src2, dst;
gpu::GpuMat d_src1, d_src2, d_dst;
for (int size = 2000; size <= 4000; size += 1000)
{
SUBTEST << "size " << size << ", 32F";
gen(src1, size, size, CV_32F, 0, 1);
gen(src2, size, size, CV_32F, 0, 1);
dst.create(size, size, CV_32F);
CPU_ON;
add(src1, src2, dst);
CPU_OFF;
d_src1 = src1;
d_src2 = src2;
d_dst.create(size, size, CV_32F);
GPU_ON;
gpu::add(d_src1, d_src2, d_dst);
GPU_OFF;
}
}
TEST(log)
{
Mat src, dst;
gpu::GpuMat d_src, d_dst;
for (int size = 2000; size <= 4000; size += 1000)
{
SUBTEST << "size " << size << ", 32F";
gen(src, size, size, CV_32F, 1, 10);
dst.create(size, size, CV_32F);
CPU_ON;
log(src, dst);
CPU_OFF;
d_src = src;
d_dst.create(size, size, CV_32F);
GPU_ON;
gpu::log(d_src, d_dst);
GPU_OFF;
}
}
TEST(exp)
{
Mat src, dst;
gpu::GpuMat d_src, d_dst;
for (int size = 2000; size <= 4000; size += 1000)
{
SUBTEST << "size " << size << ", 32F";
gen(src, size, size, CV_32F, 0, 1);
dst.create(size, size, CV_32F);
CPU_ON;
exp(src, dst);
CPU_OFF;
d_src = src;
d_dst.create(size, size, CV_32F);
GPU_ON;
gpu::exp(d_src, d_dst);
GPU_OFF;
}
}
TEST(mulSpectrums)
{
Mat src1, src2, dst;
gpu::GpuMat d_src1, d_src2, d_dst;
for (int size = 2000; size <= 4000; size += 1000)
{
SUBTEST << "size " << size;
gen(src1, size, size, CV_32FC2, Scalar::all(0), Scalar::all(1));
gen(src2, size, size, CV_32FC2, Scalar::all(0), Scalar::all(1));
dst.create(size, size, CV_32FC2);
CPU_ON;
mulSpectrums(src1, src2, dst, 0, true);
CPU_OFF;
d_src1 = src1;
d_src2 = src2;
d_dst.create(size, size, CV_32FC2);
GPU_ON;
gpu::mulSpectrums(d_src1, d_src2, d_dst, 0, true);
GPU_OFF;
}
}
TEST(resize)
{
Mat src, dst;
gpu::GpuMat d_src, d_dst;
for (int size = 1000; size <= 3000; size += 1000)
{
SUBTEST << "size " << size;
gen(src, size, size, CV_8U, 0, 256);
dst.create(size * 2, size * 2, CV_8U);
CPU_ON;
resize(src, dst, dst.size());
CPU_OFF;
d_src = src;
d_dst.create(size * 2, size * 2, CV_8U);
GPU_ON;
gpu::resize(d_src, d_dst, d_dst.size());
GPU_OFF;
}
}
TEST(Sobel)
{
Mat src, dst;
gpu::GpuMat d_src, d_dst;
for (int size = 2000; size <= 4000; size += 1000)
{
SUBTEST << "size " << size << ", 32F";
gen(src, size, size, CV_32F, 0, 1);
dst.create(size, size, CV_32F);
CPU_ON;
Sobel(src, dst, dst.depth(), 1, 1);
CPU_OFF;
d_src = src;
d_dst.create(size, size, CV_32F);
GPU_ON;
gpu::Sobel(d_src, d_dst, d_dst.depth(), 1, 1);
GPU_OFF;
}
}
TEST(cvtColor)
{
Mat src, dst;
gpu::GpuMat d_src, d_dst;
gen(src, 4000, 4000, CV_8UC1, 0, 255);
d_src.upload(src);
SUBTEST << "size 4000, CV_GRAY2BGRA";
dst.create(src.size(), CV_8UC4);
CPU_ON;
cvtColor(src, dst, CV_GRAY2BGRA, 4);
CPU_OFF;
d_dst.create(d_src.size(), CV_8UC4);
GPU_ON;
gpu::cvtColor(d_src, d_dst, CV_GRAY2BGRA, 4);
GPU_OFF;
cv::swap(src, dst);
d_src.swap(d_dst);
SUBTEST << "size 4000, CV_BGR2YCrCb";
dst.create(src.size(), CV_8UC3);
CPU_ON;
cvtColor(src, dst, CV_BGR2YCrCb);
CPU_OFF;
d_dst.create(d_src.size(), CV_8UC4);
GPU_ON;
gpu::cvtColor(d_src, d_dst, CV_BGR2YCrCb, 4);
GPU_OFF;
cv::swap(src, dst);
d_src.swap(d_dst);
SUBTEST << "size 4000, CV_YCrCb2BGR";
dst.create(src.size(), CV_8UC4);
CPU_ON;
cvtColor(src, dst, CV_YCrCb2BGR, 4);
CPU_OFF;
d_dst.create(d_src.size(), CV_8UC4);
GPU_ON;
gpu::cvtColor(d_src, d_dst, CV_YCrCb2BGR, 4);
GPU_OFF;
cv::swap(src, dst);
d_src.swap(d_dst);
SUBTEST << "size 4000, CV_BGR2XYZ";
dst.create(src.size(), CV_8UC3);
CPU_ON;
cvtColor(src, dst, CV_BGR2XYZ);
CPU_OFF;
d_dst.create(d_src.size(), CV_8UC4);
GPU_ON;
gpu::cvtColor(d_src, d_dst, CV_BGR2XYZ, 4);
GPU_OFF;
cv::swap(src, dst);
d_src.swap(d_dst);
SUBTEST << "size 4000, CV_XYZ2BGR";
dst.create(src.size(), CV_8UC4);
CPU_ON;
cvtColor(src, dst, CV_XYZ2BGR, 4);
CPU_OFF;
d_dst.create(d_src.size(), CV_8UC4);
GPU_ON;
gpu::cvtColor(d_src, d_dst, CV_XYZ2BGR, 4);
GPU_OFF;
cv::swap(src, dst);
d_src.swap(d_dst);
SUBTEST << "size 4000, CV_BGR2HSV";
dst.create(src.size(), CV_8UC3);
CPU_ON;
cvtColor(src, dst, CV_BGR2HSV);
CPU_OFF;
d_dst.create(d_src.size(), CV_8UC4);
GPU_ON;
gpu::cvtColor(d_src, d_dst, CV_BGR2HSV, 4);
GPU_OFF;
cv::swap(src, dst);
d_src.swap(d_dst);
SUBTEST << "size 4000, CV_HSV2BGR";
dst.create(src.size(), CV_8UC4);
CPU_ON;
cvtColor(src, dst, CV_HSV2BGR, 4);
CPU_OFF;
d_dst.create(d_src.size(), CV_8UC4);
GPU_ON;
gpu::cvtColor(d_src, d_dst, CV_HSV2BGR, 4);
GPU_OFF;
cv::swap(src, dst);
d_src.swap(d_dst);
}
TEST(erode)
{
Mat src, dst, ker;
gpu::GpuMat d_src, d_dst;
for (int size = 2000; size <= 4000; size += 1000)
{
SUBTEST << "size " << size;
gen(src, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256));
ker = getStructuringElement(MORPH_RECT, Size(3, 3));
dst.create(src.size(), src.type());
CPU_ON;
erode(src, dst, ker);
CPU_OFF;
d_src = src;
d_dst.create(d_src.size(), d_src.type());
GPU_ON;
gpu::erode(d_src, d_dst, ker);
GPU_OFF;
}
}
TEST(threshold)
{
Mat src, dst;
gpu::GpuMat d_src, d_dst;
for (int size = 2000; size <= 4000; size += 1000)
{
SUBTEST << "size " << size << ", 8U, THRESH_TRUNC";
gen(src, size, size, CV_8U, 0, 100);
dst.create(size, size, CV_8U);
CPU_ON;
threshold(src, dst, 50.0, 0.0, THRESH_TRUNC);
CPU_OFF;
d_src = src;
d_dst.create(size, size, CV_8U);
GPU_ON;
gpu::threshold(d_src, d_dst, 50.0, 0.0, THRESH_TRUNC);
GPU_OFF;
}
for (int size = 2000; size <= 4000; size += 1000)
{
SUBTEST << "size " << size << ", 8U, THRESH_BINARY";
gen(src, size, size, CV_8U, 0, 100);
dst.create(size, size, CV_8U);
CPU_ON;
threshold(src, dst, 50.0, 0.0, THRESH_BINARY);
CPU_OFF;
d_src = src;
d_dst.create(size, size, CV_8U);
GPU_ON;
gpu::threshold(d_src, d_dst, 50.0, 0.0, THRESH_BINARY);
GPU_OFF;
}
for (int size = 2000; size <= 4000; size += 1000)
{
SUBTEST << "size " << size << ", 32F, THRESH_TRUNC";
gen(src, size, size, CV_32F, 0, 100);
dst.create(size, size, CV_32F);
CPU_ON;
threshold(src, dst, 50.0, 0.0, THRESH_TRUNC);
CPU_OFF;
d_src = src;
d_dst.create(size, size, CV_32F);
GPU_ON;
gpu::threshold(d_src, d_dst, 50.0, 0.0, THRESH_TRUNC);
GPU_OFF;
}
}
TEST(projectPoints)
{
Mat src;
vector<Point2f> dst;
gpu::GpuMat d_src, d_dst;
Mat rvec; gen(rvec, 1, 3, CV_32F, 0, 1);
Mat tvec; gen(tvec, 1, 3, CV_32F, 0, 1);
Mat camera_mat; gen(camera_mat, 3, 3, CV_32F, 0, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
for (int size = (int)1e6, count = 0; size >= 1e5 && count < 5; size = int(size / 1.4), count++)
{
SUBTEST << "size " << size;
gen(src, 1, size, CV_32FC3, Scalar::all(0), Scalar::all(10));
dst.resize(size);
CPU_ON;
projectPoints(src, rvec, tvec, camera_mat, Mat::zeros(1, 5, CV_32F), dst);
CPU_OFF;
d_src = src;
d_dst.create(1, size, CV_32FC2);
GPU_ON;
gpu::projectPoints(d_src, rvec, tvec, camera_mat, Mat(), d_dst);
GPU_OFF;
}
}
void InitSolvePnpRansac()
{
Mat object; gen(object, 1, 4, CV_32FC3, Scalar::all(0), Scalar::all(100));
Mat image; gen(image, 1, 4, CV_32FC2, Scalar::all(0), Scalar::all(100));
Mat rvec, tvec;
gpu::solvePnPRansac(object, image, Mat::eye(3, 3, CV_32F), Mat(), rvec, tvec);
}
TEST(solvePnPRansac)
{
InitSolvePnpRansac();
for (int num_points = 5000; num_points <= 300000; num_points = int(num_points * 3.76))
{
SUBTEST << "num_points " << num_points;
Mat object; gen(object, 1, num_points, CV_32FC3, Scalar::all(10), Scalar::all(100));
Mat image; gen(image, 1, num_points, CV_32FC2, Scalar::all(10), Scalar::all(100));
Mat camera_mat; gen(camera_mat, 3, 3, CV_32F, 0.5, 1);
camera_mat.at<float>(0, 1) = 0.f;
camera_mat.at<float>(1, 0) = 0.f;
camera_mat.at<float>(2, 0) = 0.f;
camera_mat.at<float>(2, 1) = 0.f;
Mat rvec, tvec;
const int num_iters = 200;
const float max_dist = 2.0f;
vector<int> inliers_cpu, inliers_gpu;
CPU_ON;
solvePnPRansac(object, image, camera_mat, Mat::zeros(1, 5, CV_32F), rvec, tvec, false, num_iters,
max_dist, int(num_points * 0.05), inliers_cpu);
CPU_OFF;
GPU_ON;
gpu::solvePnPRansac(object, image, camera_mat, Mat::zeros(1, 5, CV_32F), rvec, tvec, false, num_iters,
max_dist, int(num_points * 0.05), &inliers_gpu);
GPU_OFF;
}
}