|
|
|
import cv2.cv as cv
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
class TestGoodFeaturesToTrack(unittest.TestCase):
|
|
|
|
def test(self):
|
|
|
|
arr = cv.LoadImage("../samples/c/lena.jpg", 0)
|
|
|
|
original = cv.CloneImage(arr)
|
|
|
|
size = cv.GetSize(arr)
|
|
|
|
eig_image = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1)
|
|
|
|
temp_image = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1)
|
|
|
|
threshes = [ x / 100. for x in range(1,10) ]
|
|
|
|
|
|
|
|
results = dict([(t, cv.GoodFeaturesToTrack(arr, eig_image, temp_image, 20000, t, 2, useHarris = 1)) for t in threshes])
|
|
|
|
|
|
|
|
# Check that GoodFeaturesToTrack has not modified input image
|
|
|
|
self.assert_(arr.tostring() == original.tostring())
|
|
|
|
|
|
|
|
# Check for repeatability
|
|
|
|
for i in range(10):
|
|
|
|
results2 = dict([(t, cv.GoodFeaturesToTrack(arr, eig_image, temp_image, 20000, t, 2, useHarris = 1)) for t in threshes])
|
|
|
|
self.assert_(results == results2)
|
|
|
|
|
|
|
|
for t0,t1 in zip(threshes, threshes[1:]):
|
|
|
|
r0 = results[t0]
|
|
|
|
r1 = results[t1]
|
|
|
|
|
|
|
|
# Increasing thresh should make result list shorter
|
|
|
|
self.assert_(len(r0) > len(r1))
|
|
|
|
|
|
|
|
# Increasing thresh should monly truncate result list
|
|
|
|
self.assert_(r0[:len(r1)] == r1)
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|