Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

473 lines
17 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <float.h>
// to make sure we can use these short names
#undef K
#undef L
#undef T
// This is based on the "An Improved Adaptive Background Mixture Model for
// Real-time Tracking with Shadow Detection" by P. KaewTraKulPong and R. Bowden
// http://personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
//
// The windowing method is used, but not the shadow detection. I make some of my
// own modifications which make more sense. There are some errors in some of their
// equations.
//
namespace cv
{
static const int defaultNMixtures = 5;
static const int defaultHistory = 200;
static const double defaultBackgroundRatio = 0.7;
static const double defaultVarThreshold = 2.5*2.5;
static const double defaultNoiseSigma = 30*0.5;
static const double defaultInitialWeight = 0.05;
class BackgroundSubtractorMOGImpl : public BackgroundSubtractorMOG
{
public:
//! the default constructor
BackgroundSubtractorMOGImpl()
{
frameSize = Size(0,0);
frameType = 0;
nframes = 0;
nmixtures = defaultNMixtures;
history = defaultHistory;
varThreshold = defaultVarThreshold;
backgroundRatio = defaultBackgroundRatio;
noiseSigma = defaultNoiseSigma;
name_ = "BackgroundSubtractor.MOG";
}
// the full constructor that takes the length of the history,
// the number of gaussian mixtures, the background ratio parameter and the noise strength
BackgroundSubtractorMOGImpl(int _history, int _nmixtures, double _backgroundRatio, double _noiseSigma=0)
{
frameSize = Size(0,0);
frameType = 0;
nframes = 0;
nmixtures = std::min(_nmixtures > 0 ? _nmixtures : defaultNMixtures, 8);
history = _history > 0 ? _history : defaultHistory;
varThreshold = defaultVarThreshold;
backgroundRatio = std::min(_backgroundRatio > 0 ? _backgroundRatio : 0.95, 1.);
noiseSigma = _noiseSigma <= 0 ? defaultNoiseSigma : _noiseSigma;
}
//! the update operator
virtual void apply(InputArray image, OutputArray fgmask, double learningRate=0);
//! re-initiaization method
virtual void initialize(Size _frameSize, int _frameType)
{
frameSize = _frameSize;
frameType = _frameType;
nframes = 0;
int nchannels = CV_MAT_CN(frameType);
CV_Assert( CV_MAT_DEPTH(frameType) == CV_8U );
// for each gaussian mixture of each pixel bg model we store ...
// the mixture sort key (w/sum_of_variances), the mixture weight (w),
// the mean (nchannels values) and
// the diagonal covariance matrix (another nchannels values)
bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + 2*nchannels), CV_32F );
bgmodel = Scalar::all(0);
}
virtual AlgorithmInfo* info() const { return 0; }
virtual void getBackgroundImage(OutputArray) const
{
CV_Error( Error::StsNotImplemented, "" );
}
virtual int getHistory() const { return history; }
virtual void setHistory(int _nframes) { history = _nframes; }
virtual int getNMixtures() const { return nmixtures; }
virtual void setNMixtures(int nmix) { nmixtures = nmix; }
virtual double getBackgroundRatio() const { return backgroundRatio; }
virtual void setBackgroundRatio(double _backgroundRatio) { backgroundRatio = _backgroundRatio; }
virtual double getNoiseSigma() const { return noiseSigma; }
virtual void setNoiseSigma(double _noiseSigma) { noiseSigma = _noiseSigma; }
virtual void write(FileStorage& fs) const
{
fs << "name" << name_
<< "history" << history
<< "nmixtures" << nmixtures
<< "backgroundRatio" << backgroundRatio
<< "noiseSigma" << noiseSigma;
}
virtual void read(const FileNode& fn)
{
CV_Assert( (String)fn["name"] == name_ );
history = (int)fn["history"];
nmixtures = (int)fn["nmixtures"];
backgroundRatio = (double)fn["backgroundRatio"];
noiseSigma = (double)fn["noiseSigma"];
}
protected:
Size frameSize;
int frameType;
Mat bgmodel;
int nframes;
int history;
int nmixtures;
double varThreshold;
double backgroundRatio;
double noiseSigma;
String name_;
};
template<typename VT> struct MixData
{
float sortKey;
float weight;
VT mean;
VT var;
};
static void process8uC1( const Mat& image, Mat& fgmask, double learningRate,
Mat& bgmodel, int nmixtures, double backgroundRatio,
double varThreshold, double noiseSigma )
{
int x, y, k, k1, rows = image.rows, cols = image.cols;
float alpha = (float)learningRate, T = (float)backgroundRatio, vT = (float)varThreshold;
int K = nmixtures;
MixData<float>* mptr = (MixData<float>*)bgmodel.data;
const float w0 = (float)defaultInitialWeight;
const float sk0 = (float)(w0/(defaultNoiseSigma*2));
const float var0 = (float)(defaultNoiseSigma*defaultNoiseSigma*4);
const float minVar = (float)(noiseSigma*noiseSigma);
for( y = 0; y < rows; y++ )
{
const uchar* src = image.ptr<uchar>(y);
uchar* dst = fgmask.ptr<uchar>(y);
if( alpha > 0 )
{
for( x = 0; x < cols; x++, mptr += K )
{
float wsum = 0;
float pix = src[x];
int kHit = -1, kForeground = -1;
for( k = 0; k < K; k++ )
{
float w = mptr[k].weight;
wsum += w;
if( w < FLT_EPSILON )
break;
float mu = mptr[k].mean;
float var = mptr[k].var;
float diff = pix - mu;
float d2 = diff*diff;
if( d2 < vT*var )
{
wsum -= w;
float dw = alpha*(1.f - w);
mptr[k].weight = w + dw;
mptr[k].mean = mu + alpha*diff;
var = std::max(var + alpha*(d2 - var), minVar);
mptr[k].var = var;
mptr[k].sortKey = w/std::sqrt(var);
for( k1 = k-1; k1 >= 0; k1-- )
{
if( mptr[k1].sortKey >= mptr[k1+1].sortKey )
break;
std::swap( mptr[k1], mptr[k1+1] );
}
kHit = k1+1;
break;
}
}
if( kHit < 0 ) // no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one
{
kHit = k = std::min(k, K-1);
wsum += w0 - mptr[k].weight;
mptr[k].weight = w0;
mptr[k].mean = pix;
mptr[k].var = var0;
mptr[k].sortKey = sk0;
}
else
for( ; k < K; k++ )
wsum += mptr[k].weight;
float wscale = 1.f/wsum;
wsum = 0;
for( k = 0; k < K; k++ )
{
wsum += mptr[k].weight *= wscale;
mptr[k].sortKey *= wscale;
if( wsum > T && kForeground < 0 )
kForeground = k+1;
}
dst[x] = (uchar)(-(kHit >= kForeground));
}
}
else
{
for( x = 0; x < cols; x++, mptr += K )
{
float pix = src[x];
int kHit = -1, kForeground = -1;
for( k = 0; k < K; k++ )
{
if( mptr[k].weight < FLT_EPSILON )
break;
float mu = mptr[k].mean;
float var = mptr[k].var;
float diff = pix - mu;
float d2 = diff*diff;
if( d2 < vT*var )
{
kHit = k;
break;
}
}
if( kHit >= 0 )
{
float wsum = 0;
for( k = 0; k < K; k++ )
{
wsum += mptr[k].weight;
if( wsum > T )
{
kForeground = k+1;
break;
}
}
}
dst[x] = (uchar)(kHit < 0 || kHit >= kForeground ? 255 : 0);
}
}
}
}
static void process8uC3( const Mat& image, Mat& fgmask, double learningRate,
Mat& bgmodel, int nmixtures, double backgroundRatio,
double varThreshold, double noiseSigma )
{
int x, y, k, k1, rows = image.rows, cols = image.cols;
float alpha = (float)learningRate, T = (float)backgroundRatio, vT = (float)varThreshold;
int K = nmixtures;
const float w0 = (float)defaultInitialWeight;
const float sk0 = (float)(w0/(defaultNoiseSigma*2*std::sqrt(3.)));
const float var0 = (float)(defaultNoiseSigma*defaultNoiseSigma*4);
const float minVar = (float)(noiseSigma*noiseSigma);
MixData<Vec3f>* mptr = (MixData<Vec3f>*)bgmodel.data;
for( y = 0; y < rows; y++ )
{
const uchar* src = image.ptr<uchar>(y);
uchar* dst = fgmask.ptr<uchar>(y);
if( alpha > 0 )
{
for( x = 0; x < cols; x++, mptr += K )
{
float wsum = 0;
Vec3f pix(src[x*3], src[x*3+1], src[x*3+2]);
int kHit = -1, kForeground = -1;
for( k = 0; k < K; k++ )
{
float w = mptr[k].weight;
wsum += w;
if( w < FLT_EPSILON )
break;
Vec3f mu = mptr[k].mean;
Vec3f var = mptr[k].var;
Vec3f diff = pix - mu;
float d2 = diff.dot(diff);
if( d2 < vT*(var[0] + var[1] + var[2]) )
{
wsum -= w;
float dw = alpha*(1.f - w);
mptr[k].weight = w + dw;
mptr[k].mean = mu + alpha*diff;
var = Vec3f(std::max(var[0] + alpha*(diff[0]*diff[0] - var[0]), minVar),
std::max(var[1] + alpha*(diff[1]*diff[1] - var[1]), minVar),
std::max(var[2] + alpha*(diff[2]*diff[2] - var[2]), minVar));
mptr[k].var = var;
mptr[k].sortKey = w/std::sqrt(var[0] + var[1] + var[2]);
for( k1 = k-1; k1 >= 0; k1-- )
{
if( mptr[k1].sortKey >= mptr[k1+1].sortKey )
break;
std::swap( mptr[k1], mptr[k1+1] );
}
kHit = k1+1;
break;
}
}
if( kHit < 0 ) // no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one
{
kHit = k = std::min(k, K-1);
wsum += w0 - mptr[k].weight;
mptr[k].weight = w0;
mptr[k].mean = pix;
mptr[k].var = Vec3f(var0, var0, var0);
mptr[k].sortKey = sk0;
}
else
for( ; k < K; k++ )
wsum += mptr[k].weight;
float wscale = 1.f/wsum;
wsum = 0;
for( k = 0; k < K; k++ )
{
wsum += mptr[k].weight *= wscale;
mptr[k].sortKey *= wscale;
if( wsum > T && kForeground < 0 )
kForeground = k+1;
}
dst[x] = (uchar)(-(kHit >= kForeground));
}
}
else
{
for( x = 0; x < cols; x++, mptr += K )
{
Vec3f pix(src[x*3], src[x*3+1], src[x*3+2]);
int kHit = -1, kForeground = -1;
for( k = 0; k < K; k++ )
{
if( mptr[k].weight < FLT_EPSILON )
break;
Vec3f mu = mptr[k].mean;
Vec3f var = mptr[k].var;
Vec3f diff = pix - mu;
float d2 = diff.dot(diff);
if( d2 < vT*(var[0] + var[1] + var[2]) )
{
kHit = k;
break;
}
}
if( kHit >= 0 )
{
float wsum = 0;
for( k = 0; k < K; k++ )
{
wsum += mptr[k].weight;
if( wsum > T )
{
kForeground = k+1;
break;
}
}
}
dst[x] = (uchar)(kHit < 0 || kHit >= kForeground ? 255 : 0);
}
}
}
}
void BackgroundSubtractorMOGImpl::apply(InputArray _image, OutputArray _fgmask, double learningRate)
{
Mat image = _image.getMat();
bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType;
if( needToInitialize )
initialize(image.size(), image.type());
CV_Assert( image.depth() == CV_8U );
_fgmask.create( image.size(), CV_8U );
Mat fgmask = _fgmask.getMat();
++nframes;
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( nframes, history );
CV_Assert(learningRate >= 0);
if( image.type() == CV_8UC1 )
process8uC1( image, fgmask, learningRate, bgmodel, nmixtures, backgroundRatio, varThreshold, noiseSigma );
else if( image.type() == CV_8UC3 )
process8uC3( image, fgmask, learningRate, bgmodel, nmixtures, backgroundRatio, varThreshold, noiseSigma );
else
CV_Error( Error::StsUnsupportedFormat, "Only 1- and 3-channel 8-bit images are supported in BackgroundSubtractorMOG" );
}
Ptr<BackgroundSubtractorMOG> createBackgroundSubtractorMOG(int history, int nmixtures,
double backgroundRatio, double noiseSigma)
{
return new BackgroundSubtractorMOGImpl(history, nmixtures, backgroundRatio, noiseSigma);
}
}
/* End of file. */