Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1130 lines
38 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018-2019, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
#include "op_inf_engine.hpp"
#include <opencv2/dnn/shape_utils.hpp>
#ifdef HAVE_INF_ENGINE
#include <ie_extension.h>
#include <ie_plugin_dispatcher.hpp>
#endif // HAVE_INF_ENGINE
#include <opencv2/core/utils/configuration.private.hpp>
#include <opencv2/core/utils/logger.hpp>
namespace cv { namespace dnn {
#ifdef HAVE_INF_ENGINE
// For networks with input layer which has an empty name, IE generates a name id[some_number].
// OpenCV lets users use an empty input name and to prevent unexpected naming,
// we can use some predefined name.
static std::string kDefaultInpLayerName = "empty_inp_layer_name";
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
InfEngineBackendNode::InfEngineBackendNode(const InferenceEngine::Builder::Layer& _layer)
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE), layer(_layer) {}
#else
InfEngineBackendNode::InfEngineBackendNode(const InferenceEngine::CNNLayerPtr& _layer)
: BackendNode(DNN_BACKEND_INFERENCE_ENGINE), layer(_layer) {}
void InfEngineBackendNode::connect(std::vector<Ptr<BackendWrapper> >& inputs,
std::vector<Ptr<BackendWrapper> >& outputs)
{
layer->insData.resize(inputs.size());
for (int i = 0; i < inputs.size(); ++i)
{
InferenceEngine::DataPtr dataPtr = infEngineDataNode(inputs[i]);
layer->insData[i] = InferenceEngine::DataWeakPtr(dataPtr);
dataPtr->inputTo[layer->name] = layer;
}
CV_Assert(!outputs.empty());
layer->outData.resize(1);
InferenceEngine::DataPtr dataPtr = infEngineDataNode(outputs[0]);
dataPtr->name = layer->name;
layer->outData[0] = dataPtr;
dataPtr->creatorLayer = InferenceEngine::CNNLayerWeakPtr(layer);
}
#endif
static std::vector<Ptr<InfEngineBackendWrapper> >
infEngineWrappers(const std::vector<Ptr<BackendWrapper> >& ptrs)
{
std::vector<Ptr<InfEngineBackendWrapper> > wrappers(ptrs.size());
for (int i = 0; i < ptrs.size(); ++i)
{
CV_Assert(!ptrs[i].empty());
wrappers[i] = ptrs[i].dynamicCast<InfEngineBackendWrapper>();
CV_Assert(!wrappers[i].empty());
}
return wrappers;
}
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
InfEngineBackendNet::InfEngineBackendNet() : netBuilder("")
{
hasNetOwner = false;
targetDevice = InferenceEngine::TargetDevice::eCPU;
}
InfEngineBackendNet::InfEngineBackendNet(InferenceEngine::CNNNetwork& net) : netBuilder(""), cnn(net)
{
hasNetOwner = true;
targetDevice = InferenceEngine::TargetDevice::eCPU;
}
void InfEngineBackendNet::connect(const std::vector<Ptr<BackendWrapper> >& inputs,
const std::vector<Ptr<BackendWrapper> >& outputs,
const std::string& layerName)
{
std::vector<Ptr<InfEngineBackendWrapper> > inpWrappers = infEngineWrappers(inputs);
std::map<std::string, int>::iterator it = layers.find(layerName);
CV_Assert(it != layers.end());
const int layerId = it->second;
for (size_t i = 0; i < inpWrappers.size(); ++i)
{
const auto& inp = inpWrappers[i];
const std::string& inpName = inp->dataPtr->name;
int inpId;
it = layers.find(inpName);
if (it == layers.end())
{
InferenceEngine::Builder::InputLayer inpLayer(!inpName.empty() ? inpName : kDefaultInpLayerName);
std::vector<size_t> shape(inp->blob->dims());
std::reverse(shape.begin(), shape.end());
inpLayer.setPort(InferenceEngine::Port(shape));
inpId = netBuilder.addLayer(inpLayer);
layers.insert({inpName, inpId});
}
else
inpId = it->second;
netBuilder.connect((size_t)inpId, {(size_t)layerId, i});
unconnectedLayersIds.erase(inpId);
}
CV_Assert(!outputs.empty());
InferenceEngine::DataPtr dataPtr = infEngineDataNode(outputs[0]);
dataPtr->name = layerName;
}
void InfEngineBackendNet::init(int targetId)
{
if (!hasNetOwner)
{
CV_Assert(!unconnectedLayersIds.empty());
for (int id : unconnectedLayersIds)
{
InferenceEngine::Builder::OutputLayer outLayer("myconv1");
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
// Inference Engine determines network precision by ports.
InferenceEngine::Precision p = (targetId == DNN_TARGET_MYRIAD ||
targetId == DNN_TARGET_OPENCL_FP16) ?
InferenceEngine::Precision::FP16 :
InferenceEngine::Precision::FP32;
outLayer.setPort(InferenceEngine::Port({}, p));
#endif
netBuilder.addLayer({InferenceEngine::PortInfo(id)}, outLayer);
}
cnn = InferenceEngine::CNNNetwork(InferenceEngine::Builder::convertToICNNNetwork(netBuilder.build()));
}
switch (targetId)
{
case DNN_TARGET_CPU:
targetDevice = InferenceEngine::TargetDevice::eCPU;
break;
case DNN_TARGET_OPENCL: case DNN_TARGET_OPENCL_FP16:
targetDevice = InferenceEngine::TargetDevice::eGPU;
break;
case DNN_TARGET_MYRIAD:
targetDevice = InferenceEngine::TargetDevice::eMYRIAD;
break;
case DNN_TARGET_FPGA:
targetDevice = InferenceEngine::TargetDevice::eFPGA;
break;
default:
CV_Error(Error::StsError, format("Unknown target identifier: %d", targetId));
}
for (const auto& name : requestedOutputs)
{
cnn.addOutput(name);
}
for (const auto& it : cnn.getInputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
CV_Assert(blobIt != allBlobs.end());
it.second->setPrecision(blobIt->second->precision());
}
for (const auto& it : cnn.getOutputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
CV_Assert(blobIt != allBlobs.end());
it.second->setPrecision(blobIt->second->precision()); // Should be always FP32
}
initPlugin(cnn);
}
void InfEngineBackendNet::addLayer(InferenceEngine::Builder::Layer& layer)
{
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
// Add weights to network and connect them after input blobs.
std::map<std::string, InferenceEngine::Parameter>& params = layer.getParameters();
std::vector<int> blobsIds;
std::vector<int> portIds;
for (const std::string& name : {"weights", "biases"})
{
bool asInput = false;
int portId = 0;
for (int i = 0; i < layer.getInputPorts().size(); ++i)
{
const auto& port = layer.getInputPorts()[i];
auto it = port.getParameters().find("type");
if (it != port.getParameters().end() && it->second == name)
{
portId = i;
asInput = true;
break;
}
}
if (!asInput)
continue;
auto it = params.find(name);
if (it != params.end())
{
InferenceEngine::Blob::Ptr blob = it->second.as<InferenceEngine::Blob::Ptr>();
params.erase(it);
int blobId = netBuilder.addLayer(InferenceEngine::Builder::ConstLayer(name).setData(blob));
blobsIds.push_back(blobId);
portIds.push_back(portId);
}
}
#endif
int id = netBuilder.addLayer(layer);
const std::string& layerName = layer.getName();
CV_Assert(layers.insert({layerName, id}).second);
unconnectedLayersIds.insert(id);
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
// By default, all the weights are connected to last ports ids.
for (int i = 0; i < blobsIds.size(); ++i)
{
netBuilder.connect((size_t)blobsIds[i], {(size_t)id, (size_t)portIds[i]});
}
#endif
}
void InfEngineBackendNet::addOutput(const std::string& name)
{
requestedOutputs.push_back(name);
}
#endif // IE >= R5
static InferenceEngine::Layout estimateLayout(const Mat& m)
{
if (m.dims == 4)
return InferenceEngine::Layout::NCHW;
else if (m.dims == 2)
return InferenceEngine::Layout::NC;
else
return InferenceEngine::Layout::ANY;
}
static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std::string& name = "")
{
std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
std::reverse(reversedShape.begin(), reversedShape.end());
if (m.type() == CV_32F)
return InferenceEngine::DataPtr(
new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32, estimateLayout(m))
);
else if (m.type() == CV_8U)
return InferenceEngine::DataPtr(
new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::U8, estimateLayout(m))
);
else
CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type()));
}
InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector<size_t>& shape,
InferenceEngine::Layout layout)
{
if (m.type() == CV_32F)
return InferenceEngine::make_shared_blob<float>(InferenceEngine::Precision::FP32,
layout, shape, (float*)m.data);
else if (m.type() == CV_8U)
return InferenceEngine::make_shared_blob<uint8_t>(InferenceEngine::Precision::U8,
layout, shape, (uint8_t*)m.data);
else
CV_Error(Error::StsNotImplemented, format("Unsupported data type %d", m.type()));
}
InferenceEngine::Blob::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout)
{
std::vector<size_t> reversedShape(&m.size[0], &m.size[0] + m.dims);
std::reverse(reversedShape.begin(), reversedShape.end());
return wrapToInfEngineBlob(m, reversedShape, layout);
}
InferenceEngine::Blob::Ptr cloneBlob(const InferenceEngine::Blob::Ptr& blob)
{
InferenceEngine::Precision precision = blob->precision();
InferenceEngine::Blob::Ptr copy;
if (precision == InferenceEngine::Precision::FP32)
{
copy = InferenceEngine::make_shared_blob<float>(precision, blob->layout(), blob->dims());
}
else if (precision == InferenceEngine::Precision::U8)
{
copy = InferenceEngine::make_shared_blob<uint8_t>(precision, blob->layout(), blob->dims());
}
else
CV_Error(Error::StsNotImplemented, "Unsupported blob precision");
copy->allocate();
return copy;
}
InferenceEngine::DataPtr infEngineDataNode(const Ptr<BackendWrapper>& ptr)
{
CV_Assert(!ptr.empty());
Ptr<InfEngineBackendWrapper> p = ptr.dynamicCast<InfEngineBackendWrapper>();
CV_Assert(!p.empty());
return p->dataPtr;
}
InfEngineBackendWrapper::InfEngineBackendWrapper(int targetId, const cv::Mat& m)
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, targetId)
{
dataPtr = wrapToInfEngineDataNode(m);
blob = wrapToInfEngineBlob(m, estimateLayout(m));
}
InfEngineBackendWrapper::InfEngineBackendWrapper(Ptr<BackendWrapper> wrapper)
: BackendWrapper(DNN_BACKEND_INFERENCE_ENGINE, wrapper->targetId)
{
Ptr<InfEngineBackendWrapper> ieWrapper = wrapper.dynamicCast<InfEngineBackendWrapper>();
CV_Assert(!ieWrapper.empty());
InferenceEngine::DataPtr srcData = ieWrapper->dataPtr;
dataPtr = InferenceEngine::DataPtr(
new InferenceEngine::Data(srcData->name, srcData->dims, srcData->precision,
srcData->layout)
);
blob = ieWrapper->blob;
}
Ptr<BackendWrapper> InfEngineBackendWrapper::create(Ptr<BackendWrapper> wrapper)
{
return Ptr<BackendWrapper>(new InfEngineBackendWrapper(wrapper));
}
InfEngineBackendWrapper::~InfEngineBackendWrapper()
{
}
void InfEngineBackendWrapper::copyToHost()
{
}
void InfEngineBackendWrapper::setHostDirty()
{
}
#if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2018R5)
InfEngineBackendNet::InfEngineBackendNet()
{
targetDevice = InferenceEngine::TargetDevice::eCPU;
precision = InferenceEngine::Precision::FP32;
hasNetOwner = false;
}
InfEngineBackendNet::InfEngineBackendNet(InferenceEngine::CNNNetwork& net)
{
targetDevice = InferenceEngine::TargetDevice::eCPU;
precision = InferenceEngine::Precision::FP32;
inputs = net.getInputsInfo();
outputs = net.getOutputsInfo();
layers.resize(net.layerCount()); // A hack to execute InfEngineBackendNet::layerCount correctly.
netOwner = net;
hasNetOwner = true;
}
void InfEngineBackendNet::Release() noexcept
{
layers.clear();
inputs.clear();
outputs.clear();
}
void InfEngineBackendNet::setPrecision(InferenceEngine::Precision p) noexcept
{
precision = p;
}
InferenceEngine::Precision InfEngineBackendNet::getPrecision() noexcept
{
return hasNetOwner ? netOwner.getPrecision() : precision;
}
InferenceEngine::Precision InfEngineBackendNet::getPrecision() const noexcept
{
return hasNetOwner ? netOwner.getPrecision() : precision;
}
// Assume that outputs of network is unconnected blobs.
void InfEngineBackendNet::getOutputsInfo(InferenceEngine::OutputsDataMap &outputs_) noexcept
{
const_cast<const InfEngineBackendNet*>(this)->getOutputsInfo(outputs_);
}
void InfEngineBackendNet::getOutputsInfo(InferenceEngine::OutputsDataMap &outputs_) const noexcept
{
outputs_ = outputs;
}
// Returns input references that aren't connected to internal outputs.
void InfEngineBackendNet::getInputsInfo(InferenceEngine::InputsDataMap &inputs_) noexcept
{
const_cast<const InfEngineBackendNet*>(this)->getInputsInfo(inputs_);
}
// Returns input references that aren't connected to internal outputs.
void InfEngineBackendNet::getInputsInfo(InferenceEngine::InputsDataMap &inputs_) const noexcept
{
inputs_ = inputs;
}
InferenceEngine::InputInfo::Ptr InfEngineBackendNet::getInput(const std::string &inputName) noexcept
{
return const_cast<const InfEngineBackendNet*>(this)->getInput(inputName);
}
InferenceEngine::InputInfo::Ptr InfEngineBackendNet::getInput(const std::string &inputName) const noexcept
{
const auto& it = inputs.find(inputName);
CV_Assert(it != inputs.end());
return it->second;
}
void InfEngineBackendNet::getName(char*, size_t) noexcept
{
}
void InfEngineBackendNet::getName(char*, size_t) const noexcept
{
}
const std::string& InfEngineBackendNet::getName() const noexcept
{
return name;
}
InferenceEngine::StatusCode InfEngineBackendNet::serialize(const std::string&, const std::string&, InferenceEngine::ResponseDesc*) const noexcept
{
CV_Error(Error::StsNotImplemented, "");
return InferenceEngine::StatusCode::OK;
}
size_t InfEngineBackendNet::layerCount() noexcept
{
return const_cast<const InfEngineBackendNet*>(this)->layerCount();
}
size_t InfEngineBackendNet::layerCount() const noexcept
{
return layers.size();
}
InferenceEngine::DataPtr& InfEngineBackendNet::getData(const char *dname) noexcept
{
CV_Error(Error::StsNotImplemented, "");
return outputs.begin()->second; // Just return something.
}
void InfEngineBackendNet::addLayer(const InferenceEngine::CNNLayerPtr &layer) noexcept
{
layers.push_back(layer);
inputs.clear();
outputs.clear();
}
InferenceEngine::StatusCode
InfEngineBackendNet::addOutput(const std::string &layerName, size_t outputIndex,
InferenceEngine::ResponseDesc *resp) noexcept
{
for (const auto& l : layers)
{
for (const InferenceEngine::DataPtr& out : l->outData)
{
if (out->name == layerName)
{
outputs[out->name] = out;
return InferenceEngine::StatusCode::OK;
}
}
}
CV_Error(Error::StsObjectNotFound, "Cannot find a layer " + layerName);
return InferenceEngine::StatusCode::OK;
}
InferenceEngine::StatusCode
InfEngineBackendNet::getLayerByName(const char *layerName, InferenceEngine::CNNLayerPtr &out,
InferenceEngine::ResponseDesc *resp) noexcept
{
return const_cast<const InfEngineBackendNet*>(this)->getLayerByName(layerName, out, resp);
}
InferenceEngine::StatusCode InfEngineBackendNet::getLayerByName(const char *layerName,
InferenceEngine::CNNLayerPtr &out,
InferenceEngine::ResponseDesc *resp) const noexcept
{
for (auto& l : layers)
{
if (l->name == layerName)
{
out = l;
return InferenceEngine::StatusCode::OK;
}
}
CV_Error(Error::StsObjectNotFound, cv::format("Cannot find a layer %s", layerName));
return InferenceEngine::StatusCode::NOT_FOUND;
}
void InfEngineBackendNet::setTargetDevice(InferenceEngine::TargetDevice device) noexcept
{
if (device != InferenceEngine::TargetDevice::eCPU &&
device != InferenceEngine::TargetDevice::eGPU &&
device != InferenceEngine::TargetDevice::eMYRIAD &&
device != InferenceEngine::TargetDevice::eFPGA)
CV_Error(Error::StsNotImplemented, "");
targetDevice = device;
}
InferenceEngine::TargetDevice InfEngineBackendNet::getTargetDevice() noexcept
{
return const_cast<const InfEngineBackendNet*>(this)->getTargetDevice();
}
InferenceEngine::TargetDevice InfEngineBackendNet::getTargetDevice() const noexcept
{
return targetDevice == InferenceEngine::TargetDevice::eFPGA ?
InferenceEngine::TargetDevice::eHETERO : targetDevice;
}
InferenceEngine::StatusCode InfEngineBackendNet::setBatchSize(const size_t) noexcept
{
CV_Error(Error::StsNotImplemented, "");
return InferenceEngine::StatusCode::OK;
}
InferenceEngine::StatusCode InfEngineBackendNet::setBatchSize(size_t size, InferenceEngine::ResponseDesc *responseDesc) noexcept
{
CV_Error(Error::StsNotImplemented, "");
return InferenceEngine::StatusCode::OK;
}
size_t InfEngineBackendNet::getBatchSize() const noexcept
{
size_t batchSize = 0;
for (const auto& inp : inputs)
{
CV_Assert(inp.second);
std::vector<size_t> dims = inp.second->getDims();
CV_Assert(!dims.empty());
if (batchSize != 0)
CV_Assert(batchSize == dims.back());
else
batchSize = dims.back();
}
return batchSize;
}
InferenceEngine::StatusCode InfEngineBackendNet::AddExtension(const InferenceEngine::IShapeInferExtensionPtr &extension, InferenceEngine::ResponseDesc *resp) noexcept
{
CV_Error(Error::StsNotImplemented, "");
return InferenceEngine::StatusCode::OK;
}
InferenceEngine::StatusCode InfEngineBackendNet::reshape(const InferenceEngine::ICNNNetwork::InputShapes &inputShapes, InferenceEngine::ResponseDesc *resp) noexcept
{
CV_Error(Error::StsNotImplemented, "");
return InferenceEngine::StatusCode::OK;
}
void InfEngineBackendNet::init(int targetId)
{
if (inputs.empty())
{
// Collect all external input blobs.
inputs.clear();
std::map<std::string, InferenceEngine::DataPtr> internalOutputs;
for (const auto& l : layers)
{
for (const InferenceEngine::DataWeakPtr& ptr : l->insData)
{
InferenceEngine::DataPtr inp(ptr);
if (internalOutputs.find(inp->name) == internalOutputs.end())
{
InferenceEngine::InputInfo::Ptr inpInfo(new InferenceEngine::InputInfo());
inpInfo->setInputData(inp);
if (inputs.find(inp->name) == inputs.end())
inputs[inp->name] = inpInfo;
}
}
for (const InferenceEngine::DataPtr& out : l->outData)
{
7 years ago
// TODO: Replace to uniqueness assertion.
if (internalOutputs.find(out->name) == internalOutputs.end())
internalOutputs[out->name] = out;
}
}
CV_Assert(!inputs.empty());
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2018R3)
for (const auto& inp : inputs)
{
InferenceEngine::LayerParams lp;
lp.name = inp.first;
lp.type = "Input";
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::CNNLayer> inpLayer(new InferenceEngine::CNNLayer(lp));
layers.push_back(inpLayer);
InferenceEngine::DataPtr dataPtr = inp.second->getInputData();
// TODO: remove precision dependency (see setInput.normalization tests)
if (dataPtr->precision == InferenceEngine::Precision::FP32)
{
inpLayer->outData.assign(1, dataPtr);
dataPtr->creatorLayer = InferenceEngine::CNNLayerWeakPtr(inpLayer);
}
}
#endif
}
if (outputs.empty())
{
// Add all unconnected blobs to output blobs.
InferenceEngine::OutputsDataMap unconnectedOuts;
for (const auto& l : layers)
{
if (l->type == "Input")
continue;
// Add all outputs.
for (const InferenceEngine::DataPtr& out : l->outData)
{
7 years ago
// TODO: Replace to uniqueness assertion.
if (unconnectedOuts.find(out->name) == unconnectedOuts.end())
unconnectedOuts[out->name] = out;
}
// Remove internally connected outputs.
for (const InferenceEngine::DataWeakPtr& inp : l->insData)
{
unconnectedOuts.erase(InferenceEngine::DataPtr(inp)->name);
}
}
CV_Assert(!unconnectedOuts.empty());
for (auto it = unconnectedOuts.begin(); it != unconnectedOuts.end(); ++it)
{
outputs[it->first] = it->second;
}
}
// Set up input blobs.
inpBlobs.clear();
for (const auto& it : inputs)
{
CV_Assert(allBlobs.find(it.first) != allBlobs.end());
inpBlobs[it.first] = allBlobs[it.first];
it.second->setPrecision(inpBlobs[it.first]->precision());
}
// Set up output blobs.
outBlobs.clear();
for (const auto& it : outputs)
{
CV_Assert(allBlobs.find(it.first) != allBlobs.end());
outBlobs[it.first] = allBlobs[it.first];
}
switch (targetId)
{
case DNN_TARGET_CPU: setTargetDevice(InferenceEngine::TargetDevice::eCPU); break;
case DNN_TARGET_OPENCL_FP16:
setPrecision(InferenceEngine::Precision::FP16);
/* Falls through. */
case DNN_TARGET_OPENCL: setTargetDevice(InferenceEngine::TargetDevice::eGPU); break;
case DNN_TARGET_MYRIAD:
{
setPrecision(InferenceEngine::Precision::FP16);
setTargetDevice(InferenceEngine::TargetDevice::eMYRIAD); break;
}
case DNN_TARGET_FPGA:
{
setPrecision(InferenceEngine::Precision::FP16);
setTargetDevice(InferenceEngine::TargetDevice::eFPGA); break;
}
default:
CV_Error(Error::StsError, format("Unknown target identifier: %d", targetId));
}
if (!isInitialized())
initPlugin(*this);
}
#endif // IE < R5
static std::map<InferenceEngine::TargetDevice, InferenceEngine::InferenceEnginePluginPtr>& getSharedPlugins()
{
static std::map<InferenceEngine::TargetDevice, InferenceEngine::InferenceEnginePluginPtr> sharedPlugins;
return sharedPlugins;
}
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5) && !defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)
static bool detectMyriadX_()
{
InferenceEngine::Builder::Network builder("");
InferenceEngine::idx_t inpId = builder.addLayer(
InferenceEngine::Builder::InputLayer().setPort(InferenceEngine::Port({1})));
#if INF_ENGINE_RELEASE <= 2018050000
InferenceEngine::idx_t clampId;
{
InferenceEngine::Builder::Layer l = InferenceEngine::Builder::ClampLayer();
auto& blobs = l.getConstantData();
auto blob = InferenceEngine::make_shared_blob<int16_t>(
InferenceEngine::Precision::FP16,
InferenceEngine::Layout::C, {1});
blob->allocate();
blobs[""] = blob;
clampId = builder.addLayer({inpId}, l);
}
builder.addLayer({InferenceEngine::PortInfo(clampId)}, InferenceEngine::Builder::OutputLayer());
#else
InferenceEngine::idx_t clampId = builder.addLayer({inpId}, InferenceEngine::Builder::ClampLayer());
builder.addLayer({InferenceEngine::PortInfo(clampId)},
InferenceEngine::Builder::OutputLayer().setPort(InferenceEngine::Port({},
InferenceEngine::Precision::FP16)));
#endif
InferenceEngine::CNNNetwork cnn = InferenceEngine::CNNNetwork(
InferenceEngine::Builder::convertToICNNNetwork(builder.build()));
InferenceEngine::TargetDevice device = InferenceEngine::TargetDevice::eMYRIAD;
InferenceEngine::InferenceEnginePluginPtr enginePtr;
{
AutoLock lock(getInitializationMutex());
auto& sharedPlugins = getSharedPlugins();
auto pluginIt = sharedPlugins.find(device);
if (pluginIt != sharedPlugins.end()) {
enginePtr = pluginIt->second;
} else {
auto dispatcher = InferenceEngine::PluginDispatcher({""});
enginePtr = dispatcher.getSuitablePlugin(device);
sharedPlugins[device] = enginePtr;
}
}
auto plugin = InferenceEngine::InferencePlugin(enginePtr);
try
{
auto netExec = plugin.LoadNetwork(cnn, {{"VPU_PLATFORM", "VPU_2480"}});
auto infRequest = netExec.CreateInferRequest();
} catch(...) {
return false;
}
return true;
}
#endif // >= 2018R5
void InfEngineBackendNet::initPlugin(InferenceEngine::ICNNNetwork& net)
{
CV_Assert(!isInitialized());
try
{
AutoLock lock(getInitializationMutex());
auto& sharedPlugins = getSharedPlugins();
auto pluginIt = sharedPlugins.find(targetDevice);
if (pluginIt != sharedPlugins.end())
{
enginePtr = pluginIt->second;
}
else
{
auto dispatcher = InferenceEngine::PluginDispatcher({""});
if (targetDevice == InferenceEngine::TargetDevice::eFPGA)
enginePtr = dispatcher.getPluginByDevice("HETERO:FPGA,CPU");
else
enginePtr = dispatcher.getSuitablePlugin(targetDevice);
sharedPlugins[targetDevice] = enginePtr;
if (targetDevice == InferenceEngine::TargetDevice::eCPU ||
targetDevice == InferenceEngine::TargetDevice::eFPGA)
{
std::string suffixes[] = {"_avx2", "_sse4", ""};
bool haveFeature[] = {
checkHardwareSupport(CPU_AVX2),
checkHardwareSupport(CPU_SSE4_2),
true
};
for (int i = 0; i < 3; ++i)
{
if (!haveFeature[i])
continue;
#ifdef _WIN32
std::string libName = "cpu_extension" + suffixes[i] + ".dll";
#elif defined(__APPLE__)
std::string libName = "libcpu_extension" + suffixes[i] + ".dylib";
#else
std::string libName = "libcpu_extension" + suffixes[i] + ".so";
#endif // _WIN32
try
{
InferenceEngine::IExtensionPtr extension =
InferenceEngine::make_so_pointer<InferenceEngine::IExtension>(libName);
enginePtr->AddExtension(extension, 0);
break;
}
catch(...) {}
}
// Some of networks can work without a library of extra layers.
}
}
plugin = InferenceEngine::InferencePlugin(enginePtr);
netExec = plugin.LoadNetwork(net, {});
}
catch (const std::exception& ex)
{
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
}
}
bool InfEngineBackendNet::isInitialized()
{
return (bool)enginePtr;
}
void InfEngineBackendNet::addBlobs(const std::vector<Ptr<BackendWrapper> >& ptrs)
{
auto wrappers = infEngineWrappers(ptrs);
for (const auto& wrapper : wrappers)
{
std::string name = wrapper->dataPtr->name;
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
name = name.empty() ? kDefaultInpLayerName : name;
#endif
allBlobs.insert({name, wrapper->blob});
}
}
void InfEngineBackendNet::InfEngineReqWrapper::makePromises(const std::vector<Ptr<BackendWrapper> >& outsWrappers)
{
auto outs = infEngineWrappers(outsWrappers);
outProms.clear();
outProms.resize(outs.size());
outsNames.resize(outs.size());
for (int i = 0; i < outs.size(); ++i)
{
outs[i]->futureMat = outProms[i].get_future();
outsNames[i] = outs[i]->dataPtr->name;
}
}
void InfEngineBackendNet::forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
bool isAsync)
{
// Look for finished requests.
Ptr<InfEngineReqWrapper> reqWrapper;
for (auto& wrapper : infRequests)
{
if (wrapper->isReady)
{
reqWrapper = wrapper;
break;
}
}
if (reqWrapper.empty())
{
reqWrapper = Ptr<InfEngineReqWrapper>(new InfEngineReqWrapper());
try
{
reqWrapper->req = netExec.CreateInferRequest();
}
catch (const std::exception& ex)
{
CV_Error(Error::StsAssert, format("Failed to initialize Inference Engine backend: %s", ex.what()));
}
infRequests.push_back(reqWrapper);
InferenceEngine::BlobMap inpBlobs, outBlobs;
for (const auto& it : cnn.getInputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
CV_Assert(blobIt != allBlobs.end());
inpBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second;
}
for (const auto& it : cnn.getOutputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
CV_Assert(blobIt != allBlobs.end());
outBlobs[name] = isAsync ? cloneBlob(blobIt->second) : blobIt->second;
}
reqWrapper->req.SetInput(inpBlobs);
reqWrapper->req.SetOutput(outBlobs);
InferenceEngine::IInferRequest::Ptr infRequestPtr = reqWrapper->req;
infRequestPtr->SetUserData(reqWrapper.get(), 0);
infRequestPtr->SetCompletionCallback(
[](InferenceEngine::IInferRequest::Ptr request, InferenceEngine::StatusCode status)
{
InfEngineReqWrapper* wrapper;
request->GetUserData((void**)&wrapper, 0);
CV_Assert(wrapper);
for (int i = 0; i < wrapper->outProms.size(); ++i)
{
const std::string& name = wrapper->outsNames[i];
Mat m = infEngineBlobToMat(wrapper->req.GetBlob(name));
if (status == InferenceEngine::StatusCode::OK)
wrapper->outProms[i].set_value(m.clone());
else
{
try {
std::runtime_error e("Async request failed");
wrapper->outProms[i].set_exception(std::make_exception_ptr(e));
} catch(...) {
CV_LOG_ERROR(NULL, "DNN: Exception occured during async inference exception propagation");
}
}
}
wrapper->isReady = true;
}
);
}
if (isAsync)
{
// Copy actual data to infer request's input blobs.
for (const auto& it : cnn.getInputsInfo())
{
const std::string& name = it.first;
auto blobIt = allBlobs.find(name);
Mat srcMat = infEngineBlobToMat(blobIt->second);
Mat dstMat = infEngineBlobToMat(reqWrapper->req.GetBlob(name));
srcMat.copyTo(dstMat);
}
// Set promises to output blobs wrappers.
reqWrapper->makePromises(outBlobsWrappers);
reqWrapper->isReady = false;
reqWrapper->req.StartAsync();
}
else
{
reqWrapper->req.Infer();
}
}
Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob)
{
// NOTE: Inference Engine sizes are reversed.
std::vector<size_t> dims = blob->dims();
std::vector<int> size(dims.rbegin(), dims.rend());
int type = -1;
switch (blob->precision())
{
case InferenceEngine::Precision::FP32: type = CV_32F; break;
case InferenceEngine::Precision::U8: type = CV_8U; break;
default:
CV_Error(Error::StsNotImplemented, "Unsupported blob precision");
}
return Mat(size, type, (void*)blob->buffer());
}
bool InfEngineBackendLayer::getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
#if INF_ENGINE_VER_MAJOR_EQ(INF_ENGINE_RELEASE_2018R3)
InferenceEngine::ICNNNetwork::InputShapes inShapes = const_cast<InferenceEngine::CNNNetwork&>(t_net).getInputShapes();
#else
InferenceEngine::ICNNNetwork::InputShapes inShapes = t_net.getInputShapes();
#endif
InferenceEngine::ICNNNetwork::InputShapes::iterator itr;
bool equal_flag = true;
size_t i = 0;
for (itr = inShapes.begin(); itr != inShapes.end(); ++itr)
{
InferenceEngine::SizeVector currentInShape(inputs[i].begin(), inputs[i].end());
if (itr->second != currentInShape)
{
itr->second = currentInShape;
equal_flag = false;
}
i++;
}
if (!equal_flag)
{
InferenceEngine::CNNNetwork curr_t_net(t_net);
curr_t_net.reshape(inShapes);
}
std::vector<size_t> dims = t_net.getOutputsInfo()[name]->getDims();
outputs.push_back(MatShape(dims.begin(), dims.end()));
return false;
}
bool InfEngineBackendLayer::supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT ||
(backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine());
}
void InfEngineBackendLayer::forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs,
OutputArrayOfArrays internals)
{
CV_Error(Error::StsInternal, "Choose Inference Engine as a preferable backend.");
}
InferenceEngine::Blob::Ptr convertFp16(const InferenceEngine::Blob::Ptr& blob)
{
auto halfs = InferenceEngine::make_shared_blob<int16_t>(InferenceEngine::Precision::FP16, blob->layout(), blob->dims());
halfs->allocate();
Mat floatsData(1, blob->size(), CV_32F, blob->buffer());
Mat halfsData(1, blob->size(), CV_16SC1, halfs->buffer());
convertFp16(floatsData, halfsData);
return halfs;
}
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
void addConstantData(const std::string& name, InferenceEngine::Blob::Ptr data,
InferenceEngine::Builder::Layer& l)
{
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2019R1)
l.getParameters()[name] = data;
#else
l.addConstantData(name, data);
#endif
}
#endif
#endif // HAVE_INF_ENGINE
bool haveInfEngine()
{
#ifdef HAVE_INF_ENGINE
return true;
#else
return false;
#endif // HAVE_INF_ENGINE
}
void forwardInfEngine(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
Ptr<BackendNode>& node, bool isAsync)
{
CV_Assert(haveInfEngine());
#ifdef HAVE_INF_ENGINE
CV_Assert(!node.empty());
Ptr<InfEngineBackendNode> ieNode = node.dynamicCast<InfEngineBackendNode>();
CV_Assert(!ieNode.empty());
ieNode->net->forward(outBlobsWrappers, isAsync);
#endif // HAVE_INF_ENGINE
}
CV__DNN_EXPERIMENTAL_NS_BEGIN
void resetMyriadDevice()
{
#ifdef HAVE_INF_ENGINE
AutoLock lock(getInitializationMutex());
getSharedPlugins().erase(InferenceEngine::TargetDevice::eMYRIAD);
#endif // HAVE_INF_ENGINE
}
#ifdef HAVE_INF_ENGINE
bool isMyriadX()
{
static bool myriadX = getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X;
return myriadX;
}
static std::string getInferenceEngineVPUType_()
{
static std::string param_vpu_type = utils::getConfigurationParameterString("OPENCV_DNN_IE_VPU_TYPE", "");
if (param_vpu_type == "")
{
#if defined(OPENCV_DNN_IE_VPU_TYPE_DEFAULT)
param_vpu_type = OPENCV_DNN_IE_VPU_TYPE_DEFAULT;
#elif INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
CV_LOG_INFO(NULL, "OpenCV-DNN: running Inference Engine VPU autodetection: Myriad2/X. In case of other accelerator types specify 'OPENCV_DNN_IE_VPU_TYPE' parameter");
try {
bool isMyriadX_ = detectMyriadX_();
if (isMyriadX_)
{
param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X;
}
else
{
param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2;
}
}
catch (...)
{
CV_LOG_WARNING(NULL, "OpenCV-DNN: Failed Inference Engine VPU autodetection. Specify 'OPENCV_DNN_IE_VPU_TYPE' parameter.");
param_vpu_type.clear();
}
#else
CV_LOG_WARNING(NULL, "OpenCV-DNN: VPU auto-detection is not implemented. Consider specifying VPU type via 'OPENCV_DNN_IE_VPU_TYPE' parameter");
param_vpu_type = CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2;
#endif
}
CV_LOG_INFO(NULL, "OpenCV-DNN: Inference Engine VPU type='" << param_vpu_type << "'");
return param_vpu_type;
}
cv::String getInferenceEngineVPUType()
{
static cv::String vpu_type = getInferenceEngineVPUType_();
return vpu_type;
}
#else // HAVE_INF_ENGINE
cv::String getInferenceEngineVPUType()
{
CV_Error(Error::StsNotImplemented, "This OpenCV build doesn't include InferenceEngine support");
}
#endif // HAVE_INF_ENGINE
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace dnn, namespace cv