|
|
|
/* This sample demonstrates the way you can perform independent tasks
|
|
|
|
on the different GPUs */
|
|
|
|
|
|
|
|
// Disable some warnings which are caused with CUDA headers
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
#pragma warning(disable: 4201 4408 4100)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include "opencv2/core.hpp"
|
|
|
|
#include "opencv2/cudaarithm.hpp"
|
|
|
|
|
|
|
|
#if !defined(HAVE_CUDA)
|
|
|
|
|
|
|
|
int main()
|
|
|
|
{
|
|
|
|
std::cout << "CUDA support is required (OpenCV CMake parameter 'WITH_CUDA' must be true)." << std::endl;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::cuda;
|
|
|
|
|
|
|
|
struct Worker : public cv::ParallelLoopBody
|
|
|
|
{
|
|
|
|
void operator()(const Range& r) const CV_OVERRIDE
|
|
|
|
{
|
|
|
|
for (int i = r.start; i < r.end; ++i) { this->operator()(i); }
|
|
|
|
}
|
|
|
|
void operator()(int device_id) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
int main()
|
|
|
|
{
|
|
|
|
int num_devices = getCudaEnabledDeviceCount();
|
|
|
|
if (num_devices < 2)
|
|
|
|
{
|
|
|
|
std::cout << "Two or more GPUs are required\n";
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
for (int i = 0; i < num_devices; ++i)
|
|
|
|
{
|
|
|
|
cv::cuda::printShortCudaDeviceInfo(i);
|
|
|
|
|
|
|
|
DeviceInfo dev_info(i);
|
|
|
|
if (!dev_info.isCompatible())
|
|
|
|
{
|
|
|
|
std::cout << "CUDA module isn't built for GPU #" << i << " ("
|
|
|
|
<< dev_info.name() << ", CC " << dev_info.majorVersion()
|
|
|
|
<< dev_info.minorVersion() << "\n";
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Execute calculation in two threads using two GPUs
|
|
|
|
cv::Range devices(0, 2);
|
|
|
|
cv::parallel_for_(devices, Worker(), devices.size());
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Worker::operator()(int device_id) const
|
|
|
|
{
|
|
|
|
setDevice(device_id);
|
|
|
|
|
|
|
|
Mat src(1000, 1000, CV_32F);
|
|
|
|
Mat dst;
|
|
|
|
|
|
|
|
RNG rng(0);
|
|
|
|
rng.fill(src, RNG::UNIFORM, 0, 1);
|
|
|
|
|
|
|
|
// CPU works
|
|
|
|
cv::transpose(src, dst);
|
|
|
|
|
|
|
|
// GPU works
|
|
|
|
GpuMat d_src(src);
|
|
|
|
GpuMat d_dst;
|
|
|
|
cuda::transpose(d_src, d_dst);
|
|
|
|
|
|
|
|
// Check results
|
|
|
|
bool passed = cv::norm(dst - Mat(d_dst), NORM_INF) < 1e-3;
|
|
|
|
std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): "
|
|
|
|
<< (passed ? "passed" : "FAILED") << endl;
|
|
|
|
|
|
|
|
// Deallocate data here, otherwise deallocation will be performed
|
|
|
|
// after context is extracted from the stack
|
|
|
|
d_src.release();
|
|
|
|
d_dst.release();
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|