Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

88 lines
3.1 KiB

#!/usr/bin/env python
import argparse
import sft
import sys, os, os.path, glob, math, cv2
from datetime import datetime
import numpy
plot_colors = ['b', 'r', 'g', 'c', 'm']
# "key" : ( b, g, r)
bgr = { "red" : ( 0, 0, 255),
"green" : ( 0, 255, 0),
"blue" : (255, 0 , 0)}
def call_parser(f, a):
return eval( "sft.parse_" + f + "('" + a + "')")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description = 'Plot ROC curve using Caltech mathod of per image detection performance estimation.')
# positional
parser.add_argument("cascade", help = "Path to the tested detector.", nargs='+')
parser.add_argument("input", help = "Image sequence pattern.")
parser.add_argument("annotations", help = "Path to the annotations.")
# optional
parser.add_argument("-m", "--min_scale", dest = "min_scale", type = float, metavar= "fl", help = "Minimum scale to be tested.", default = 0.4)
parser.add_argument("-M", "--max_scale", dest = "max_scale", type = float, metavar= "fl", help = "Maximum scale to be tested.", default = 5.0)
parser.add_argument("-o", "--output", dest = "output", type = str, metavar= "path", help = "Path to store resultiong image.", default = "./roc.png")
parser.add_argument("-n", "--nscales", dest = "nscales", type = int, metavar= "n", help = "Prefered count of scales from min to max.", default = 55)
# required
parser.add_argument("-f", "--anttn-format", dest = "anttn_format", choices = ['inria', 'caltech', "idl"], help = "Annotation file for test sequence.", required = True)
args = parser.parse_args()
print args.cascade
# # parse annotations
sft.initPlot()
samples = call_parser(args.anttn_format, args.annotations)
for idx, each in enumerate(args.cascade):
print each
cascade = sft.cascade(args.min_scale, args.max_scale, args.nscales, each)
pattern = args.input
camera = cv2.VideoCapture(pattern)
# for plotting over dataset
nannotated = 0
nframes = 0
confidenses = []
tp = []
while True:
ret, img = camera.read()
if not ret:
break;
name = pattern % (nframes,)
_, tail = os.path.split(name)
boxes = samples[tail]
boxes = sft.norm_acpect_ratio(boxes, 0.5)
nannotated = nannotated + len(boxes)
nframes = nframes + 1
rects, confs = cascade.detect(img, rois = None)
if confs is None:
continue
dts = sft.convert2detections(rects, confs)
confs = confs.tolist()[0]
confs.sort(lambda x, y : -1 if (x - y) > 0 else 1)
confidenses = confidenses + confs
matched = sft.match(boxes, dts)
tp = tp + matched
print nframes, nannotated
fppi, miss_rate = sft.computeROC(confidenses, tp, nannotated, nframes)
sft.plotLogLog(fppi, miss_rate, plot_colors[idx])
sft.showPlot("roc_curve.png")