|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// @Authors
|
|
|
|
// Peng Xiao, pengxiao@multicorewareinc.com
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors as is and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
#ifdef HAVE_OPENCV_OCL
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using std::tr1::get;
|
|
|
|
|
|
|
|
static bool keyPointsEquals(const cv::KeyPoint& p1, const cv::KeyPoint& p2)
|
|
|
|
{
|
|
|
|
const double maxPtDif = 0.1;
|
|
|
|
const double maxSizeDif = 0.1;
|
|
|
|
const double maxAngleDif = 0.1;
|
|
|
|
const double maxResponseDif = 0.01;
|
|
|
|
|
|
|
|
double dist = cv::norm(p1.pt - p2.pt);
|
|
|
|
|
|
|
|
if (dist < maxPtDif &&
|
|
|
|
fabs(p1.size - p2.size) < maxSizeDif &&
|
|
|
|
abs(p1.angle - p2.angle) < maxAngleDif &&
|
|
|
|
abs(p1.response - p2.response) < maxResponseDif &&
|
|
|
|
p1.octave == p2.octave &&
|
|
|
|
p1.class_id == p2.class_id)
|
|
|
|
{
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int getMatchedPointsCount(std::vector<cv::KeyPoint>& gold, std::vector<cv::KeyPoint>& actual)
|
|
|
|
{
|
|
|
|
std::sort(actual.begin(), actual.end(), perf::comparators::KeypointGreater());
|
|
|
|
std::sort(gold.begin(), gold.end(), perf::comparators::KeypointGreater());
|
|
|
|
|
|
|
|
int validCount = 0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < gold.size(); ++i)
|
|
|
|
{
|
|
|
|
const cv::KeyPoint& p1 = gold[i];
|
|
|
|
const cv::KeyPoint& p2 = actual[i];
|
|
|
|
|
|
|
|
if (keyPointsEquals(p1, p2))
|
|
|
|
++validCount;
|
|
|
|
}
|
|
|
|
|
|
|
|
return validCount;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int getMatchedPointsCount(const std::vector<cv::KeyPoint>& keypoints1, const std::vector<cv::KeyPoint>& keypoints2, const std::vector<cv::DMatch>& matches)
|
|
|
|
{
|
|
|
|
int validCount = 0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < matches.size(); ++i)
|
|
|
|
{
|
|
|
|
const cv::DMatch& m = matches[i];
|
|
|
|
|
|
|
|
const cv::KeyPoint& p1 = keypoints1[m.queryIdx];
|
|
|
|
const cv::KeyPoint& p2 = keypoints2[m.trainIdx];
|
|
|
|
|
|
|
|
if (keyPointsEquals(p1, p2))
|
|
|
|
++validCount;
|
|
|
|
}
|
|
|
|
|
|
|
|
return validCount;
|
|
|
|
}
|
|
|
|
|
|
|
|
IMPLEMENT_PARAM_CLASS(HessianThreshold, double)
|
|
|
|
IMPLEMENT_PARAM_CLASS(Octaves, int)
|
|
|
|
IMPLEMENT_PARAM_CLASS(OctaveLayers, int)
|
|
|
|
IMPLEMENT_PARAM_CLASS(Extended, bool)
|
|
|
|
IMPLEMENT_PARAM_CLASS(Upright, bool)
|
|
|
|
|
|
|
|
PARAM_TEST_CASE(SURF, HessianThreshold, Octaves, OctaveLayers, Extended, Upright)
|
|
|
|
{
|
|
|
|
double hessianThreshold;
|
|
|
|
int nOctaves;
|
|
|
|
int nOctaveLayers;
|
|
|
|
bool extended;
|
|
|
|
bool upright;
|
|
|
|
|
|
|
|
virtual void SetUp()
|
|
|
|
{
|
|
|
|
hessianThreshold = get<0>(GetParam());
|
|
|
|
nOctaves = get<1>(GetParam());
|
|
|
|
nOctaveLayers = get<2>(GetParam());
|
|
|
|
extended = get<3>(GetParam());
|
|
|
|
upright = get<4>(GetParam());
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST_P(SURF, DISABLED_Detector)
|
|
|
|
{
|
|
|
|
cv::Mat image = cv::imread(string(cvtest::TS::ptr()->get_data_path()) + "shared/fruits.png", cv::IMREAD_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(image.empty());
|
|
|
|
|
|
|
|
cv::ocl::SURF_OCL surf;
|
|
|
|
surf.hessianThreshold = static_cast<float>(hessianThreshold);
|
|
|
|
surf.nOctaves = nOctaves;
|
|
|
|
surf.nOctaveLayers = nOctaveLayers;
|
|
|
|
surf.extended = extended;
|
|
|
|
surf.upright = upright;
|
|
|
|
surf.keypointsRatio = 0.05f;
|
|
|
|
|
|
|
|
std::vector<cv::KeyPoint> keypoints;
|
|
|
|
surf(cv::ocl::oclMat(image), cv::ocl::oclMat(), keypoints);
|
|
|
|
|
|
|
|
cv::SURF surf_gold;
|
|
|
|
surf_gold.hessianThreshold = hessianThreshold;
|
|
|
|
surf_gold.nOctaves = nOctaves;
|
|
|
|
surf_gold.nOctaveLayers = nOctaveLayers;
|
|
|
|
surf_gold.extended = extended;
|
|
|
|
surf_gold.upright = upright;
|
|
|
|
|
|
|
|
std::vector<cv::KeyPoint> keypoints_gold;
|
|
|
|
surf_gold(image, cv::noArray(), keypoints_gold);
|
|
|
|
|
|
|
|
ASSERT_EQ(keypoints_gold.size(), keypoints.size());
|
|
|
|
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints);
|
|
|
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints_gold.size();
|
|
|
|
|
|
|
|
EXPECT_GT(matchedRatio, 0.99);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST_P(SURF, DISABLED_Descriptor)
|
|
|
|
{
|
|
|
|
cv::Mat image = cv::imread(string(cvtest::TS::ptr()->get_data_path()) + "shared/fruits.png", cv::IMREAD_GRAYSCALE);
|
|
|
|
ASSERT_FALSE(image.empty());
|
|
|
|
|
|
|
|
cv::ocl::SURF_OCL surf;
|
|
|
|
surf.hessianThreshold = static_cast<float>(hessianThreshold);
|
|
|
|
surf.nOctaves = nOctaves;
|
|
|
|
surf.nOctaveLayers = nOctaveLayers;
|
|
|
|
surf.extended = extended;
|
|
|
|
surf.upright = upright;
|
|
|
|
surf.keypointsRatio = 0.05f;
|
|
|
|
|
|
|
|
cv::SURF surf_gold;
|
|
|
|
surf_gold.hessianThreshold = hessianThreshold;
|
|
|
|
surf_gold.nOctaves = nOctaves;
|
|
|
|
surf_gold.nOctaveLayers = nOctaveLayers;
|
|
|
|
surf_gold.extended = extended;
|
|
|
|
surf_gold.upright = upright;
|
|
|
|
|
|
|
|
std::vector<cv::KeyPoint> keypoints;
|
|
|
|
surf_gold(image, cv::noArray(), keypoints);
|
|
|
|
|
|
|
|
cv::ocl::oclMat descriptors;
|
|
|
|
surf(cv::ocl::oclMat(image), cv::ocl::oclMat(), keypoints, descriptors, true);
|
|
|
|
|
|
|
|
cv::Mat descriptors_gold;
|
|
|
|
surf_gold(image, cv::noArray(), keypoints, descriptors_gold, true);
|
|
|
|
|
|
|
|
cv::BFMatcher matcher(surf.defaultNorm());
|
|
|
|
std::vector<cv::DMatch> matches;
|
|
|
|
matcher.match(descriptors_gold, cv::Mat(descriptors), matches);
|
|
|
|
|
|
|
|
int matchedCount = getMatchedPointsCount(keypoints, keypoints, matches);
|
|
|
|
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size();
|
|
|
|
|
|
|
|
EXPECT_GT(matchedRatio, 0.35);
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(OCL_Features2D, SURF, testing::Combine(
|
|
|
|
testing::Values(HessianThreshold(500.0), HessianThreshold(1000.0)),
|
|
|
|
testing::Values(Octaves(3), Octaves(4)),
|
|
|
|
testing::Values(OctaveLayers(2), OctaveLayers(3)),
|
|
|
|
testing::Values(Extended(false), Extended(true)),
|
|
|
|
testing::Values(Upright(false), Upright(true))));
|
|
|
|
|
|
|
|
#endif // HAVE_OPENCV_OCL
|