|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
typedef tuple<string, int> File_Mode;
|
|
|
|
typedef testing::TestWithParam<File_Mode> Imgcodecs_FileMode;
|
|
|
|
|
|
|
|
TEST_P(Imgcodecs_FileMode, regression)
|
|
|
|
{
|
|
|
|
const string root = cvtest::TS::ptr()->get_data_path();
|
|
|
|
const string filename = root + get<0>(GetParam());
|
|
|
|
const int mode = get<1>(GetParam());
|
|
|
|
|
|
|
|
const Mat single = imread(filename, mode);
|
|
|
|
ASSERT_FALSE(single.empty());
|
|
|
|
|
|
|
|
vector<Mat> pages;
|
|
|
|
ASSERT_TRUE(imreadmulti(filename, pages, mode));
|
|
|
|
ASSERT_FALSE(pages.empty());
|
|
|
|
const Mat page = pages[0];
|
|
|
|
ASSERT_FALSE(page.empty());
|
|
|
|
|
|
|
|
EXPECT_EQ(page.channels(), single.channels());
|
|
|
|
EXPECT_EQ(page.depth(), single.depth());
|
|
|
|
EXPECT_EQ(page.size().height, single.size().height);
|
|
|
|
EXPECT_EQ(page.size().width, single.size().width);
|
|
|
|
EXPECT_PRED_FORMAT2(cvtest::MatComparator(0, 0), page, single);
|
|
|
|
}
|
|
|
|
|
|
|
|
const string all_images[] =
|
|
|
|
{
|
|
|
|
#ifdef HAVE_JASPER
|
|
|
|
"readwrite/Rome.jp2",
|
|
|
|
"readwrite/Bretagne2.jp2",
|
|
|
|
"readwrite/Bretagne2.jp2",
|
|
|
|
"readwrite/Grey.jp2",
|
|
|
|
"readwrite/Grey.jp2",
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_GDCM
|
|
|
|
"readwrite/int16-mono1.dcm",
|
|
|
|
"readwrite/uint8-mono2.dcm",
|
|
|
|
"readwrite/uint16-mono2.dcm",
|
|
|
|
"readwrite/uint8-rgb.dcm",
|
|
|
|
#endif
|
|
|
|
"readwrite/color_palette_alpha.png",
|
|
|
|
"readwrite/multipage.tif",
|
|
|
|
"readwrite/ordinary.bmp",
|
|
|
|
"readwrite/rle8.bmp",
|
|
|
|
"readwrite/test_1_c1.jpg",
|
|
|
|
"readwrite/rle.hdr"
|
|
|
|
};
|
|
|
|
|
|
|
|
const int basic_modes[] =
|
|
|
|
{
|
|
|
|
IMREAD_UNCHANGED,
|
|
|
|
IMREAD_GRAYSCALE,
|
|
|
|
IMREAD_COLOR,
|
|
|
|
IMREAD_ANYDEPTH,
|
|
|
|
IMREAD_ANYCOLOR
|
|
|
|
};
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(All, Imgcodecs_FileMode,
|
|
|
|
testing::Combine(
|
|
|
|
testing::ValuesIn(all_images),
|
|
|
|
testing::ValuesIn(basic_modes)));
|
|
|
|
|
|
|
|
// GDAL does not support "hdr", "dcm" and have problems with "jp2"
|
|
|
|
struct notForGDAL {
|
|
|
|
bool operator()(const string &name) const {
|
|
|
|
const string &ext = name.substr(name.size() - 3, 3);
|
|
|
|
return ext == "hdr" || ext == "dcm" || ext == "jp2";
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
inline vector<string> gdal_images()
|
|
|
|
{
|
|
|
|
vector<string> res;
|
|
|
|
std::back_insert_iterator< vector<string> > it(res);
|
|
|
|
std::remove_copy_if(all_images, all_images + sizeof(all_images)/sizeof(all_images[0]), it, notForGDAL());
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(GDAL, Imgcodecs_FileMode,
|
|
|
|
testing::Combine(
|
|
|
|
testing::ValuesIn(gdal_images()),
|
|
|
|
testing::Values(IMREAD_LOAD_GDAL)));
|
|
|
|
|
|
|
|
//==================================================================================================
|
|
|
|
|
|
|
|
typedef tuple<string, Size> Ext_Size;
|
|
|
|
typedef testing::TestWithParam<Ext_Size> Imgcodecs_ExtSize;
|
|
|
|
|
|
|
|
TEST_P(Imgcodecs_ExtSize, write_imageseq)
|
|
|
|
{
|
|
|
|
const string ext = get<0>(GetParam());
|
|
|
|
const Size size = get<1>(GetParam());
|
|
|
|
const Point2i center = Point2i(size.width / 2, size.height / 2);
|
|
|
|
const int radius = std::min(size.height, size.width / 4);
|
|
|
|
|
|
|
|
for (int cn = 1; cn <= 4; cn++)
|
|
|
|
{
|
|
|
|
SCOPED_TRACE(format("channels %d", cn));
|
|
|
|
std::vector<int> parameters;
|
|
|
|
if (cn == 2)
|
|
|
|
continue;
|
|
|
|
if (cn == 4 && ext != ".tiff")
|
|
|
|
continue;
|
|
|
|
if (cn > 1 && (ext == ".pbm" || ext == ".pgm"))
|
|
|
|
continue;
|
|
|
|
if (cn != 3 && ext == ".ppm")
|
|
|
|
continue;
|
|
|
|
string filename = cv::tempfile(format("%d%s", cn, ext.c_str()).c_str());
|
|
|
|
|
|
|
|
Mat img_gt(size, CV_MAKETYPE(CV_8U, cn), Scalar::all(0));
|
|
|
|
circle(img_gt, center, radius, Scalar::all(255));
|
|
|
|
#if 1
|
|
|
|
if (ext == ".pbm" || ext == ".pgm" || ext == ".ppm")
|
|
|
|
{
|
|
|
|
parameters.push_back(IMWRITE_PXM_BINARY);
|
|
|
|
parameters.push_back(0);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
ASSERT_TRUE(imwrite(filename, img_gt, parameters));
|
|
|
|
Mat img = imread(filename, IMREAD_UNCHANGED);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
EXPECT_EQ(img.size(), img.size());
|
|
|
|
EXPECT_EQ(img.type(), img.type());
|
|
|
|
EXPECT_EQ(cn, img.channels());
|
|
|
|
|
|
|
|
if (ext == ".jpg")
|
|
|
|
{
|
|
|
|
// JPEG format does not provide 100% accuracy
|
|
|
|
// using fuzzy image comparison
|
|
|
|
double n = cvtest::norm(img, img_gt, NORM_L1);
|
|
|
|
double expected = 0.07 * img.size().area();
|
|
|
|
EXPECT_LT(n, expected);
|
|
|
|
EXPECT_PRED_FORMAT2(cvtest::MatComparator(10, 0), img, img_gt);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
double n = cvtest::norm(img, img_gt, NORM_L2);
|
|
|
|
EXPECT_LT(n, 1.);
|
|
|
|
EXPECT_PRED_FORMAT2(cvtest::MatComparator(0, 0), img, img_gt);
|
|
|
|
}
|
|
|
|
#if 0
|
|
|
|
std::cout << filename << std::endl;
|
|
|
|
imshow("loaded", img);
|
|
|
|
waitKey(0);
|
|
|
|
#else
|
|
|
|
EXPECT_EQ(0, remove(filename.c_str()));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const string all_exts[] =
|
|
|
|
{
|
|
|
|
#ifdef HAVE_PNG
|
|
|
|
".png",
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_TIFF
|
|
|
|
".tiff",
|
|
|
|
#endif
|
|
|
|
#ifdef HAVE_JPEG
|
|
|
|
".jpg",
|
|
|
|
#endif
|
|
|
|
".bmp",
|
|
|
|
".pam",
|
|
|
|
".ppm",
|
|
|
|
".pgm",
|
|
|
|
".pbm",
|
|
|
|
".pnm"
|
|
|
|
};
|
|
|
|
|
|
|
|
vector<Size> all_sizes()
|
|
|
|
{
|
|
|
|
vector<Size> res;
|
|
|
|
for (int k = 1; k <= 5; ++k)
|
|
|
|
res.push_back(Size(640 * k, 480 * k));
|
|
|
|
return res;
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(All, Imgcodecs_ExtSize,
|
|
|
|
testing::Combine(
|
|
|
|
testing::ValuesIn(all_exts),
|
|
|
|
testing::ValuesIn(all_sizes())));
|
|
|
|
|
|
|
|
typedef testing::TestWithParam<bool> Imgcodecs_pbm;
|
|
|
|
TEST_P(Imgcodecs_pbm, write_read)
|
|
|
|
{
|
|
|
|
bool binary = GetParam();
|
|
|
|
const String ext = "pbm";
|
|
|
|
const string full_name = cv::tempfile(ext.c_str());
|
|
|
|
|
|
|
|
Size size(640, 480);
|
|
|
|
const Point2i center = Point2i(size.width / 2, size.height / 2);
|
|
|
|
const int radius = std::min(size.height, size.width / 4);
|
|
|
|
Mat image(size, CV_8UC1, Scalar::all(0));
|
|
|
|
circle(image, center, radius, Scalar::all(255));
|
|
|
|
|
|
|
|
vector<int> pbm_params;
|
|
|
|
pbm_params.push_back(IMWRITE_PXM_BINARY);
|
|
|
|
pbm_params.push_back(binary);
|
|
|
|
|
|
|
|
imwrite( full_name, image, pbm_params );
|
|
|
|
Mat loaded = imread(full_name, IMREAD_UNCHANGED);
|
|
|
|
ASSERT_FALSE(loaded.empty());
|
|
|
|
|
|
|
|
EXPECT_EQ(0, cvtest::norm(loaded, image, NORM_INF));
|
|
|
|
|
|
|
|
FILE *f = fopen(full_name.c_str(), "rb");
|
|
|
|
ASSERT_TRUE(f != NULL);
|
|
|
|
ASSERT_EQ('P', getc(f));
|
|
|
|
ASSERT_EQ('1' + (binary ? 3 : 0), getc(f));
|
|
|
|
fclose(f);
|
|
|
|
EXPECT_EQ(0, remove(full_name.c_str()));
|
|
|
|
}
|
|
|
|
|
|
|
|
INSTANTIATE_TEST_CASE_P(All, Imgcodecs_pbm, testing::Bool());
|
|
|
|
|
|
|
|
|
|
|
|
//==================================================================================================
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Bmp, read_rle8)
|
|
|
|
{
|
|
|
|
const string root = cvtest::TS::ptr()->get_data_path();
|
|
|
|
Mat rle = imread(root + "readwrite/rle8.bmp");
|
|
|
|
ASSERT_FALSE(rle.empty());
|
|
|
|
Mat ord = imread(root + "readwrite/ordinary.bmp");
|
|
|
|
ASSERT_FALSE(ord.empty());
|
|
|
|
EXPECT_LE(cvtest::norm(rle, ord, NORM_L2), 1.e-10);
|
|
|
|
EXPECT_PRED_FORMAT2(cvtest::MatComparator(0, 0), rle, ord);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Hdr, regression)
|
|
|
|
{
|
|
|
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "/readwrite/";
|
|
|
|
string name_rle = folder + "rle.hdr";
|
|
|
|
string name_no_rle = folder + "no_rle.hdr";
|
|
|
|
Mat img_rle = imread(name_rle, -1);
|
|
|
|
ASSERT_FALSE(img_rle.empty()) << "Could not open " << name_rle;
|
|
|
|
Mat img_no_rle = imread(name_no_rle, -1);
|
|
|
|
ASSERT_FALSE(img_no_rle.empty()) << "Could not open " << name_no_rle;
|
|
|
|
|
|
|
|
double min = 0.0, max = 1.0;
|
|
|
|
minMaxLoc(abs(img_rle - img_no_rle), &min, &max);
|
|
|
|
ASSERT_FALSE(max > DBL_EPSILON);
|
|
|
|
string tmp_file_name = tempfile(".hdr");
|
|
|
|
vector<int>param(1);
|
|
|
|
for(int i = 0; i < 2; i++) {
|
|
|
|
param[0] = i;
|
|
|
|
imwrite(tmp_file_name, img_rle, param);
|
|
|
|
Mat written_img = imread(tmp_file_name, -1);
|
|
|
|
ASSERT_FALSE(written_img.empty()) << "Could not open " << tmp_file_name;
|
|
|
|
minMaxLoc(abs(img_rle - written_img), &min, &max);
|
|
|
|
ASSERT_FALSE(max > DBL_EPSILON);
|
|
|
|
}
|
|
|
|
remove(tmp_file_name.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Pam, read_write)
|
|
|
|
{
|
|
|
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "readwrite/";
|
|
|
|
string filepath = folder + "lena.pam";
|
|
|
|
|
|
|
|
cv::Mat img = cv::imread(filepath);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
std::vector<int> params;
|
|
|
|
params.push_back(IMWRITE_PAM_TUPLETYPE);
|
|
|
|
params.push_back(IMWRITE_PAM_FORMAT_RGB);
|
|
|
|
|
|
|
|
string writefile = cv::tempfile(".pam");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(writefile, img, params));
|
|
|
|
cv::Mat reread = cv::imread(writefile);
|
|
|
|
|
|
|
|
string writefile_no_param = cv::tempfile(".pam");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(writefile_no_param, img));
|
|
|
|
cv::Mat reread_no_param = cv::imread(writefile_no_param);
|
|
|
|
|
|
|
|
EXPECT_EQ(0, cvtest::norm(reread, reread_no_param, NORM_INF));
|
|
|
|
EXPECT_EQ(0, cvtest::norm(img, reread, NORM_INF));
|
|
|
|
|
|
|
|
remove(writefile.c_str());
|
|
|
|
remove(writefile_no_param.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
}} // namespace
|