|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::cuda;
|
|
|
|
|
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
|
|
|
|
|
|
|
void cv::cuda::gemm(InputArray, InputArray, double, InputArray, double, OutputArray, int, Stream&) { throw_no_cuda(); }
|
|
|
|
|
|
|
|
void cv::cuda::mulSpectrums(InputArray, InputArray, OutputArray, int, bool, Stream&) { throw_no_cuda(); }
|
|
|
|
void cv::cuda::mulAndScaleSpectrums(InputArray, InputArray, OutputArray, int, float, bool, Stream&) { throw_no_cuda(); }
|
|
|
|
|
|
|
|
void cv::cuda::dft(InputArray, OutputArray, Size, int, Stream&) { throw_no_cuda(); }
|
|
|
|
|
|
|
|
Ptr<Convolution> cv::cuda::createConvolution(Size) { throw_no_cuda(); return Ptr<Convolution>(); }
|
|
|
|
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
|
|
|
|
namespace
|
|
|
|
{
|
|
|
|
#define error_entry(entry) { entry, #entry }
|
|
|
|
|
|
|
|
struct ErrorEntry
|
|
|
|
{
|
|
|
|
int code;
|
|
|
|
const char* str;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct ErrorEntryComparer
|
|
|
|
{
|
|
|
|
int code;
|
|
|
|
ErrorEntryComparer(int code_) : code(code_) {}
|
|
|
|
bool operator()(const ErrorEntry& e) const { return e.code == code; }
|
|
|
|
};
|
|
|
|
|
|
|
|
String getErrorString(int code, const ErrorEntry* errors, size_t n)
|
|
|
|
{
|
|
|
|
size_t idx = std::find_if(errors, errors + n, ErrorEntryComparer(code)) - errors;
|
|
|
|
|
|
|
|
const char* msg = (idx != n) ? errors[idx].str : "Unknown error code";
|
|
|
|
String str = cv::format("%s [Code = %d]", msg, code);
|
|
|
|
|
|
|
|
return str;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef HAVE_CUBLAS
|
|
|
|
namespace
|
|
|
|
{
|
|
|
|
const ErrorEntry cublas_errors[] =
|
|
|
|
{
|
|
|
|
error_entry( CUBLAS_STATUS_SUCCESS ),
|
|
|
|
error_entry( CUBLAS_STATUS_NOT_INITIALIZED ),
|
|
|
|
error_entry( CUBLAS_STATUS_ALLOC_FAILED ),
|
|
|
|
error_entry( CUBLAS_STATUS_INVALID_VALUE ),
|
|
|
|
error_entry( CUBLAS_STATUS_ARCH_MISMATCH ),
|
|
|
|
error_entry( CUBLAS_STATUS_MAPPING_ERROR ),
|
|
|
|
error_entry( CUBLAS_STATUS_EXECUTION_FAILED ),
|
|
|
|
error_entry( CUBLAS_STATUS_INTERNAL_ERROR )
|
|
|
|
};
|
|
|
|
|
|
|
|
const size_t cublas_error_num = sizeof(cublas_errors) / sizeof(cublas_errors[0]);
|
|
|
|
|
|
|
|
static inline void ___cublasSafeCall(cublasStatus_t err, const char* file, const int line, const char* func)
|
|
|
|
{
|
|
|
|
if (CUBLAS_STATUS_SUCCESS != err)
|
|
|
|
{
|
|
|
|
String msg = getErrorString(err, cublas_errors, cublas_error_num);
|
|
|
|
cv::error(cv::Error::GpuApiCallError, msg, func, file, line);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define cublasSafeCall(expr) ___cublasSafeCall(expr, __FILE__, __LINE__, CV_Func)
|
|
|
|
#endif // HAVE_CUBLAS
|
|
|
|
|
|
|
|
#ifdef HAVE_CUFFT
|
|
|
|
namespace
|
|
|
|
{
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
|
|
// CUFFT errors
|
|
|
|
|
|
|
|
const ErrorEntry cufft_errors[] =
|
|
|
|
{
|
|
|
|
error_entry( CUFFT_INVALID_PLAN ),
|
|
|
|
error_entry( CUFFT_ALLOC_FAILED ),
|
|
|
|
error_entry( CUFFT_INVALID_TYPE ),
|
|
|
|
error_entry( CUFFT_INVALID_VALUE ),
|
|
|
|
error_entry( CUFFT_INTERNAL_ERROR ),
|
|
|
|
error_entry( CUFFT_EXEC_FAILED ),
|
|
|
|
error_entry( CUFFT_SETUP_FAILED ),
|
|
|
|
error_entry( CUFFT_INVALID_SIZE ),
|
|
|
|
error_entry( CUFFT_UNALIGNED_DATA )
|
|
|
|
};
|
|
|
|
|
|
|
|
const int cufft_error_num = sizeof(cufft_errors) / sizeof(cufft_errors[0]);
|
|
|
|
|
|
|
|
void ___cufftSafeCall(int err, const char* file, const int line, const char* func)
|
|
|
|
{
|
|
|
|
if (CUFFT_SUCCESS != err)
|
|
|
|
{
|
|
|
|
String msg = getErrorString(err, cufft_errors, cufft_error_num);
|
|
|
|
cv::error(cv::Error::GpuApiCallError, msg, func, file, line);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define cufftSafeCall(expr) ___cufftSafeCall(expr, __FILE__, __LINE__, CV_Func)
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
// gemm
|
|
|
|
|
|
|
|
void cv::cuda::gemm(InputArray _src1, InputArray _src2, double alpha, InputArray _src3, double beta, OutputArray _dst, int flags, Stream& stream)
|
|
|
|
{
|
|
|
|
#ifndef HAVE_CUBLAS
|
|
|
|
(void) _src1;
|
|
|
|
(void) _src2;
|
|
|
|
(void) alpha;
|
|
|
|
(void) _src3;
|
|
|
|
(void) beta;
|
|
|
|
(void) _dst;
|
|
|
|
(void) flags;
|
|
|
|
(void) stream;
|
|
|
|
CV_Error(Error::StsNotImplemented, "The library was build without CUBLAS");
|
|
|
|
#else
|
|
|
|
// CUBLAS works with column-major matrices
|
|
|
|
|
|
|
|
GpuMat src1 = getInputMat(_src1, stream);
|
|
|
|
GpuMat src2 = getInputMat(_src2, stream);
|
|
|
|
GpuMat src3 = getInputMat(_src3, stream);
|
|
|
|
|
|
|
|
CV_Assert( src1.type() == CV_32FC1 || src1.type() == CV_32FC2 || src1.type() == CV_64FC1 || src1.type() == CV_64FC2 );
|
|
|
|
CV_Assert( src2.type() == src1.type() && (src3.empty() || src3.type() == src1.type()) );
|
|
|
|
|
|
|
|
if (src1.depth() == CV_64F)
|
|
|
|
{
|
|
|
|
if (!deviceSupports(NATIVE_DOUBLE))
|
|
|
|
CV_Error(cv::Error::StsUnsupportedFormat, "The device doesn't support double");
|
|
|
|
}
|
|
|
|
|
|
|
|
bool tr1 = (flags & GEMM_1_T) != 0;
|
|
|
|
bool tr2 = (flags & GEMM_2_T) != 0;
|
|
|
|
bool tr3 = (flags & GEMM_3_T) != 0;
|
|
|
|
|
|
|
|
if (src1.type() == CV_64FC2)
|
|
|
|
{
|
|
|
|
if (tr1 || tr2 || tr3)
|
|
|
|
CV_Error(cv::Error::StsNotImplemented, "transpose operation doesn't implemented for CV_64FC2 type");
|
|
|
|
}
|
|
|
|
|
|
|
|
Size src1Size = tr1 ? Size(src1.rows, src1.cols) : src1.size();
|
|
|
|
Size src2Size = tr2 ? Size(src2.rows, src2.cols) : src2.size();
|
|
|
|
Size src3Size = tr3 ? Size(src3.rows, src3.cols) : src3.size();
|
|
|
|
Size dstSize(src2Size.width, src1Size.height);
|
|
|
|
|
|
|
|
CV_Assert( src1Size.width == src2Size.height );
|
|
|
|
CV_Assert( src3.empty() || src3Size == dstSize );
|
|
|
|
|
|
|
|
GpuMat dst = getOutputMat(_dst, dstSize, src1.type(), stream);
|
|
|
|
|
|
|
|
if (beta != 0)
|
|
|
|
{
|
|
|
|
if (src3.empty())
|
|
|
|
{
|
|
|
|
dst.setTo(Scalar::all(0), stream);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
if (tr3)
|
|
|
|
{
|
|
|
|
cuda::transpose(src3, dst, stream);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
src3.copyTo(dst, stream);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cublasHandle_t handle;
|
|
|
|
cublasSafeCall( cublasCreate_v2(&handle) );
|
|
|
|
|
|
|
|
cublasSafeCall( cublasSetStream_v2(handle, StreamAccessor::getStream(stream)) );
|
|
|
|
|
|
|
|
cublasSafeCall( cublasSetPointerMode_v2(handle, CUBLAS_POINTER_MODE_HOST) );
|
|
|
|
|
|
|
|
const float alphaf = static_cast<float>(alpha);
|
|
|
|
const float betaf = static_cast<float>(beta);
|
|
|
|
|
|
|
|
const cuComplex alphacf = make_cuComplex(alphaf, 0);
|
|
|
|
const cuComplex betacf = make_cuComplex(betaf, 0);
|
|
|
|
|
|
|
|
const cuDoubleComplex alphac = make_cuDoubleComplex(alpha, 0);
|
|
|
|
const cuDoubleComplex betac = make_cuDoubleComplex(beta, 0);
|
|
|
|
|
|
|
|
cublasOperation_t transa = tr2 ? CUBLAS_OP_T : CUBLAS_OP_N;
|
|
|
|
cublasOperation_t transb = tr1 ? CUBLAS_OP_T : CUBLAS_OP_N;
|
|
|
|
|
|
|
|
switch (src1.type())
|
|
|
|
{
|
|
|
|
case CV_32FC1:
|
|
|
|
cublasSafeCall( cublasSgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
|
|
|
|
&alphaf,
|
|
|
|
src2.ptr<float>(), static_cast<int>(src2.step / sizeof(float)),
|
|
|
|
src1.ptr<float>(), static_cast<int>(src1.step / sizeof(float)),
|
|
|
|
&betaf,
|
|
|
|
dst.ptr<float>(), static_cast<int>(dst.step / sizeof(float))) );
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CV_64FC1:
|
|
|
|
cublasSafeCall( cublasDgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
|
|
|
|
&alpha,
|
|
|
|
src2.ptr<double>(), static_cast<int>(src2.step / sizeof(double)),
|
|
|
|
src1.ptr<double>(), static_cast<int>(src1.step / sizeof(double)),
|
|
|
|
&beta,
|
|
|
|
dst.ptr<double>(), static_cast<int>(dst.step / sizeof(double))) );
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CV_32FC2:
|
|
|
|
cublasSafeCall( cublasCgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
|
|
|
|
&alphacf,
|
|
|
|
src2.ptr<cuComplex>(), static_cast<int>(src2.step / sizeof(cuComplex)),
|
|
|
|
src1.ptr<cuComplex>(), static_cast<int>(src1.step / sizeof(cuComplex)),
|
|
|
|
&betacf,
|
|
|
|
dst.ptr<cuComplex>(), static_cast<int>(dst.step / sizeof(cuComplex))) );
|
|
|
|
break;
|
|
|
|
|
|
|
|
case CV_64FC2:
|
|
|
|
cublasSafeCall( cublasZgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
|
|
|
|
&alphac,
|
|
|
|
src2.ptr<cuDoubleComplex>(), static_cast<int>(src2.step / sizeof(cuDoubleComplex)),
|
|
|
|
src1.ptr<cuDoubleComplex>(), static_cast<int>(src1.step / sizeof(cuDoubleComplex)),
|
|
|
|
&betac,
|
|
|
|
dst.ptr<cuDoubleComplex>(), static_cast<int>(dst.step / sizeof(cuDoubleComplex))) );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
cublasSafeCall( cublasDestroy_v2(handle) );
|
|
|
|
|
|
|
|
syncOutput(dst, _dst, stream);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// DFT function
|
|
|
|
|
|
|
|
void cv::cuda::dft(InputArray _src, OutputArray _dst, Size dft_size, int flags, Stream& stream)
|
|
|
|
{
|
|
|
|
if (getInputMat(_src, stream).channels() == 2)
|
|
|
|
flags |= DFT_COMPLEX_INPUT;
|
|
|
|
|
|
|
|
Ptr<DFT> dft = createDFT(dft_size, flags);
|
|
|
|
dft->compute(_src, _dst, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// DFT algorithm
|
|
|
|
|
|
|
|
#ifdef HAVE_CUFFT
|
|
|
|
|
|
|
|
namespace
|
|
|
|
{
|
|
|
|
|
|
|
|
class DFTImpl : public DFT
|
|
|
|
{
|
|
|
|
Size dft_size, dft_size_opt;
|
|
|
|
bool is_1d_input, is_row_dft, is_scaled_dft, is_inverse, is_complex_input, is_complex_output;
|
|
|
|
|
|
|
|
cufftType dft_type;
|
|
|
|
cufftHandle plan;
|
|
|
|
|
|
|
|
public:
|
|
|
|
DFTImpl(Size dft_size, int flags)
|
|
|
|
: dft_size(dft_size),
|
|
|
|
dft_size_opt(dft_size),
|
|
|
|
is_1d_input((dft_size.height == 1) || (dft_size.width == 1)),
|
|
|
|
is_row_dft((flags & DFT_ROWS) != 0),
|
|
|
|
is_scaled_dft((flags & DFT_SCALE) != 0),
|
|
|
|
is_inverse((flags & DFT_INVERSE) != 0),
|
|
|
|
is_complex_input((flags & DFT_COMPLEX_INPUT) != 0),
|
|
|
|
is_complex_output(!(flags & DFT_REAL_OUTPUT)),
|
|
|
|
dft_type(!is_complex_input ? CUFFT_R2C : (is_complex_output ? CUFFT_C2C : CUFFT_C2R))
|
|
|
|
{
|
|
|
|
// We don't support unpacked output (in the case of real input)
|
|
|
|
CV_Assert( !(flags & DFT_COMPLEX_OUTPUT) );
|
|
|
|
|
|
|
|
// We don't support real-to-real transform
|
|
|
|
CV_Assert( is_complex_input || is_complex_output );
|
|
|
|
|
|
|
|
if (is_1d_input && !is_row_dft)
|
|
|
|
{
|
|
|
|
// If the source matrix is single column handle it as single row
|
|
|
|
dft_size_opt.width = std::max(dft_size.width, dft_size.height);
|
|
|
|
dft_size_opt.height = std::min(dft_size.width, dft_size.height);
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_Assert( dft_size_opt.width > 1 );
|
|
|
|
|
|
|
|
if (is_1d_input || is_row_dft)
|
|
|
|
cufftSafeCall( cufftPlan1d(&plan, dft_size_opt.width, dft_type, dft_size_opt.height) );
|
|
|
|
else
|
|
|
|
cufftSafeCall( cufftPlan2d(&plan, dft_size_opt.height, dft_size_opt.width, dft_type) );
|
|
|
|
}
|
|
|
|
|
|
|
|
~DFTImpl()
|
|
|
|
{
|
|
|
|
cufftSafeCall( cufftDestroy(plan) );
|
|
|
|
}
|
|
|
|
|
|
|
|
void compute(InputArray _src, OutputArray _dst, Stream& stream)
|
|
|
|
{
|
|
|
|
GpuMat src = getInputMat(_src, stream);
|
|
|
|
|
|
|
|
CV_Assert( src.type() == CV_32FC1 || src.type() == CV_32FC2 );
|
|
|
|
CV_Assert( is_complex_input == (src.channels() == 2) );
|
|
|
|
|
|
|
|
// Make sure here we work with the continuous input,
|
|
|
|
// as CUFFT can't handle gaps
|
|
|
|
GpuMat src_cont;
|
|
|
|
if (src.isContinuous())
|
|
|
|
{
|
|
|
|
src_cont = src;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
BufferPool pool(stream);
|
|
|
|
src_cont.allocator = pool.getAllocator();
|
|
|
|
createContinuous(src.rows, src.cols, src.type(), src_cont);
|
|
|
|
src.copyTo(src_cont, stream);
|
|
|
|
}
|
|
|
|
|
|
|
|
cufftSafeCall( cufftSetStream(plan, StreamAccessor::getStream(stream)) );
|
|
|
|
|
|
|
|
if (is_complex_input)
|
|
|
|
{
|
|
|
|
if (is_complex_output)
|
|
|
|
{
|
|
|
|
createContinuous(dft_size, CV_32FC2, _dst);
|
|
|
|
GpuMat dst = _dst.getGpuMat();
|
|
|
|
|
|
|
|
cufftSafeCall(cufftExecC2C(
|
|
|
|
plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftComplex>(),
|
|
|
|
is_inverse ? CUFFT_INVERSE : CUFFT_FORWARD));
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
createContinuous(dft_size, CV_32F, _dst);
|
|
|
|
GpuMat dst = _dst.getGpuMat();
|
|
|
|
|
|
|
|
cufftSafeCall(cufftExecC2R(
|
|
|
|
plan, src_cont.ptr<cufftComplex>(), dst.ptr<cufftReal>()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// We could swap dft_size for efficiency. Here we must reflect it
|
|
|
|
if (dft_size == dft_size_opt)
|
|
|
|
createContinuous(Size(dft_size.width / 2 + 1, dft_size.height), CV_32FC2, _dst);
|
|
|
|
else
|
|
|
|
createContinuous(Size(dft_size.width, dft_size.height / 2 + 1), CV_32FC2, _dst);
|
|
|
|
|
|
|
|
GpuMat dst = _dst.getGpuMat();
|
|
|
|
|
|
|
|
cufftSafeCall(cufftExecR2C(
|
|
|
|
plan, src_cont.ptr<cufftReal>(), dst.ptr<cufftComplex>()));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (is_scaled_dft)
|
|
|
|
cuda::multiply(_dst, Scalar::all(1. / dft_size.area()), _dst, 1, -1, stream);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Ptr<DFT> cv::cuda::createDFT(Size dft_size, int flags)
|
|
|
|
{
|
|
|
|
#ifndef HAVE_CUFFT
|
|
|
|
(void) dft_size;
|
|
|
|
(void) flags;
|
|
|
|
CV_Error(Error::StsNotImplemented, "The library was build without CUFFT");
|
|
|
|
return Ptr<DFT>();
|
|
|
|
#else
|
|
|
|
return makePtr<DFTImpl>(dft_size, flags);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Convolution
|
|
|
|
|
|
|
|
#ifdef HAVE_CUFFT
|
|
|
|
|
|
|
|
namespace
|
|
|
|
{
|
|
|
|
class ConvolutionImpl : public Convolution
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
explicit ConvolutionImpl(Size user_block_size_) : user_block_size(user_block_size_) {}
|
|
|
|
|
|
|
|
void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null());
|
|
|
|
|
|
|
|
private:
|
|
|
|
void create(Size image_size, Size templ_size);
|
|
|
|
static Size estimateBlockSize(Size result_size);
|
|
|
|
|
|
|
|
Size result_size;
|
|
|
|
Size block_size;
|
|
|
|
Size user_block_size;
|
|
|
|
Size dft_size;
|
|
|
|
int spect_len;
|
|
|
|
|
|
|
|
GpuMat image_spect, templ_spect, result_spect;
|
|
|
|
GpuMat image_block, templ_block, result_data;
|
|
|
|
};
|
|
|
|
|
|
|
|
void ConvolutionImpl::create(Size image_size, Size templ_size)
|
|
|
|
{
|
|
|
|
result_size = Size(image_size.width - templ_size.width + 1,
|
|
|
|
image_size.height - templ_size.height + 1);
|
|
|
|
|
|
|
|
block_size = user_block_size;
|
|
|
|
if (user_block_size.width == 0 || user_block_size.height == 0)
|
|
|
|
block_size = estimateBlockSize(result_size);
|
|
|
|
|
|
|
|
dft_size.width = 1 << int(ceil(std::log(block_size.width + templ_size.width - 1.) / std::log(2.)));
|
|
|
|
dft_size.height = 1 << int(ceil(std::log(block_size.height + templ_size.height - 1.) / std::log(2.)));
|
|
|
|
|
|
|
|
// CUFFT has hard-coded kernels for power-of-2 sizes (up to 8192),
|
|
|
|
// see CUDA Toolkit 4.1 CUFFT Library Programming Guide
|
|
|
|
if (dft_size.width > 8192)
|
|
|
|
dft_size.width = getOptimalDFTSize(block_size.width + templ_size.width - 1);
|
|
|
|
if (dft_size.height > 8192)
|
|
|
|
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1);
|
|
|
|
|
|
|
|
// To avoid wasting time doing small DFTs
|
|
|
|
dft_size.width = std::max(dft_size.width, 512);
|
|
|
|
dft_size.height = std::max(dft_size.height, 512);
|
|
|
|
|
|
|
|
createContinuous(dft_size, CV_32F, image_block);
|
|
|
|
createContinuous(dft_size, CV_32F, templ_block);
|
|
|
|
createContinuous(dft_size, CV_32F, result_data);
|
|
|
|
|
|
|
|
spect_len = dft_size.height * (dft_size.width / 2 + 1);
|
|
|
|
createContinuous(1, spect_len, CV_32FC2, image_spect);
|
|
|
|
createContinuous(1, spect_len, CV_32FC2, templ_spect);
|
|
|
|
createContinuous(1, spect_len, CV_32FC2, result_spect);
|
|
|
|
|
|
|
|
// Use maximum result matrix block size for the estimated DFT block size
|
|
|
|
block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
|
|
|
|
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
|
|
|
|
}
|
|
|
|
|
|
|
|
Size ConvolutionImpl::estimateBlockSize(Size result_size)
|
|
|
|
{
|
|
|
|
int width = (result_size.width + 2) / 3;
|
|
|
|
int height = (result_size.height + 2) / 3;
|
|
|
|
width = std::min(width, result_size.width);
|
|
|
|
height = std::min(height, result_size.height);
|
|
|
|
return Size(width, height);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ConvolutionImpl::convolve(InputArray _image, InputArray _templ, OutputArray _result, bool ccorr, Stream& _stream)
|
|
|
|
{
|
|
|
|
GpuMat image = getInputMat(_image, _stream);
|
|
|
|
GpuMat templ = getInputMat(_templ, _stream);
|
|
|
|
|
|
|
|
CV_Assert( image.type() == CV_32FC1 );
|
|
|
|
CV_Assert( templ.type() == CV_32FC1 );
|
|
|
|
|
|
|
|
create(image.size(), templ.size());
|
|
|
|
|
|
|
|
GpuMat result = getOutputMat(_result, result_size, CV_32FC1, _stream);
|
|
|
|
|
|
|
|
cudaStream_t stream = StreamAccessor::getStream(_stream);
|
|
|
|
|
|
|
|
cufftHandle planR2C, planC2R;
|
|
|
|
cufftSafeCall( cufftPlan2d(&planC2R, dft_size.height, dft_size.width, CUFFT_C2R) );
|
|
|
|
cufftSafeCall( cufftPlan2d(&planR2C, dft_size.height, dft_size.width, CUFFT_R2C) );
|
|
|
|
|
|
|
|
cufftSafeCall( cufftSetStream(planR2C, stream) );
|
|
|
|
cufftSafeCall( cufftSetStream(planC2R, stream) );
|
|
|
|
|
|
|
|
GpuMat templ_roi(templ.size(), CV_32FC1, templ.data, templ.step);
|
|
|
|
cuda::copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
|
|
|
|
templ_block.cols - templ_roi.cols, 0, Scalar(), _stream);
|
|
|
|
|
|
|
|
cufftSafeCall( cufftExecR2C(planR2C, templ_block.ptr<cufftReal>(), templ_spect.ptr<cufftComplex>()) );
|
|
|
|
|
|
|
|
// Process all blocks of the result matrix
|
|
|
|
for (int y = 0; y < result.rows; y += block_size.height)
|
|
|
|
{
|
|
|
|
for (int x = 0; x < result.cols; x += block_size.width)
|
|
|
|
{
|
|
|
|
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
|
|
|
|
std::min(y + dft_size.height, image.rows) - y);
|
|
|
|
GpuMat image_roi(image_roi_size, CV_32F, (void*)(image.ptr<float>(y) + x),
|
|
|
|
image.step);
|
|
|
|
cuda::copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
|
|
|
|
0, image_block.cols - image_roi.cols, 0, Scalar(), _stream);
|
|
|
|
|
|
|
|
cufftSafeCall(cufftExecR2C(planR2C, image_block.ptr<cufftReal>(),
|
|
|
|
image_spect.ptr<cufftComplex>()));
|
|
|
|
cuda::mulAndScaleSpectrums(image_spect, templ_spect, result_spect, 0,
|
|
|
|
1.f / dft_size.area(), ccorr, _stream);
|
|
|
|
cufftSafeCall(cufftExecC2R(planC2R, result_spect.ptr<cufftComplex>(),
|
|
|
|
result_data.ptr<cufftReal>()));
|
|
|
|
|
|
|
|
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
|
|
|
|
std::min(y + block_size.height, result.rows) - y);
|
|
|
|
GpuMat result_roi(result_roi_size, result.type(),
|
|
|
|
(void*)(result.ptr<float>(y) + x), result.step);
|
|
|
|
GpuMat result_block(result_roi_size, result_data.type(),
|
|
|
|
result_data.ptr(), result_data.step);
|
|
|
|
|
|
|
|
result_block.copyTo(result_roi, _stream);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cufftSafeCall( cufftDestroy(planR2C) );
|
|
|
|
cufftSafeCall( cufftDestroy(planC2R) );
|
|
|
|
|
|
|
|
syncOutput(result, _result, _stream);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Ptr<Convolution> cv::cuda::createConvolution(Size user_block_size)
|
|
|
|
{
|
|
|
|
#ifndef HAVE_CUFFT
|
|
|
|
(void) user_block_size;
|
|
|
|
CV_Error(Error::StsNotImplemented, "The library was build without CUFFT");
|
|
|
|
return Ptr<Convolution>();
|
|
|
|
#else
|
|
|
|
return makePtr<ConvolutionImpl>(user_block_size);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|