|
|
|
#include "opencv2/core.hpp"
|
|
|
|
#include "opencv2/ml.hpp"
|
|
|
|
|
|
|
|
#include <cstdio>
|
|
|
|
#include <vector>
|
|
|
|
#include <iostream>
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::ml;
|
|
|
|
|
|
|
|
static void help()
|
|
|
|
{
|
|
|
|
printf("\nThe sample demonstrates how to train Random Trees classifier\n"
|
|
|
|
"(or Boosting classifier, or MLP, or Knearest, or Nbayes, or Support Vector Machines - see main()) using the provided dataset.\n"
|
|
|
|
"\n"
|
|
|
|
"We use the sample database letter-recognition.data\n"
|
|
|
|
"from UCI Repository, here is the link:\n"
|
|
|
|
"\n"
|
|
|
|
"Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).\n"
|
|
|
|
"UCI Repository of machine learning databases\n"
|
|
|
|
"[http://www.ics.uci.edu/~mlearn/MLRepository.html].\n"
|
|
|
|
"Irvine, CA: University of California, Department of Information and Computer Science.\n"
|
|
|
|
"\n"
|
|
|
|
"The dataset consists of 20000 feature vectors along with the\n"
|
|
|
|
"responses - capital latin letters A..Z.\n"
|
|
|
|
"The first 16000 (10000 for boosting)) samples are used for training\n"
|
|
|
|
"and the remaining 4000 (10000 for boosting) - to test the classifier.\n"
|
|
|
|
"======================================================\n");
|
|
|
|
printf("\nThis is letter recognition sample.\n"
|
|
|
|
"The usage: letter_recog [-data=<path to letter-recognition.data>] \\\n"
|
|
|
|
" [-save=<output XML file for the classifier>] \\\n"
|
|
|
|
" [-load=<XML file with the pre-trained classifier>] \\\n"
|
|
|
|
" [-boost|-mlp|-knearest|-nbayes|-svm] # to use boost/mlp/knearest/SVM classifier instead of default Random Trees\n" );
|
|
|
|
}
|
|
|
|
|
|
|
|
// This function reads data and responses from the file <filename>
|
|
|
|
static bool
|
|
|
|
read_num_class_data( const string& filename, int var_count,
|
|
|
|
Mat* _data, Mat* _responses )
|
|
|
|
{
|
|
|
|
const int M = 1024;
|
|
|
|
char buf[M+2];
|
|
|
|
|
|
|
|
Mat el_ptr(1, var_count, CV_32F);
|
|
|
|
int i;
|
|
|
|
vector<int> responses;
|
|
|
|
|
|
|
|
_data->release();
|
|
|
|
_responses->release();
|
|
|
|
|
|
|
|
FILE* f = fopen( filename.c_str(), "rt" );
|
|
|
|
if( !f )
|
|
|
|
{
|
|
|
|
cout << "Could not read the database " << filename << endl;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
char* ptr;
|
|
|
|
if( !fgets( buf, M, f ) || !strchr( buf, ',' ) )
|
|
|
|
break;
|
|
|
|
responses.push_back((int)buf[0]);
|
|
|
|
ptr = buf+2;
|
|
|
|
for( i = 0; i < var_count; i++ )
|
|
|
|
{
|
|
|
|
int n = 0;
|
|
|
|
sscanf( ptr, "%f%n", &el_ptr.at<float>(i), &n );
|
|
|
|
ptr += n + 1;
|
|
|
|
}
|
|
|
|
if( i < var_count )
|
|
|
|
break;
|
|
|
|
_data->push_back(el_ptr);
|
|
|
|
}
|
|
|
|
fclose(f);
|
|
|
|
Mat(responses).copyTo(*_responses);
|
|
|
|
|
|
|
|
cout << "The database " << filename << " is loaded.\n";
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T>
|
|
|
|
static Ptr<T> load_classifier(const string& filename_to_load)
|
|
|
|
{
|
|
|
|
// load classifier from the specified file
|
|
|
|
Ptr<T> model = StatModel::load<T>( filename_to_load );
|
|
|
|
if( model.empty() )
|
|
|
|
cout << "Could not read the classifier " << filename_to_load << endl;
|
|
|
|
else
|
|
|
|
cout << "The classifier " << filename_to_load << " is loaded.\n";
|
|
|
|
|
|
|
|
return model;
|
|
|
|
}
|
|
|
|
|
|
|
|
static Ptr<TrainData>
|
|
|
|
prepare_train_data(const Mat& data, const Mat& responses, int ntrain_samples)
|
|
|
|
{
|
|
|
|
Mat sample_idx = Mat::zeros( 1, data.rows, CV_8U );
|
|
|
|
Mat train_samples = sample_idx.colRange(0, ntrain_samples);
|
|
|
|
train_samples.setTo(Scalar::all(1));
|
|
|
|
|
|
|
|
int nvars = data.cols;
|
|
|
|
Mat var_type( nvars + 1, 1, CV_8U );
|
|
|
|
var_type.setTo(Scalar::all(VAR_ORDERED));
|
|
|
|
var_type.at<uchar>(nvars) = VAR_CATEGORICAL;
|
|
|
|
|
|
|
|
return TrainData::create(data, ROW_SAMPLE, responses,
|
|
|
|
noArray(), sample_idx, noArray(), var_type);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline TermCriteria TC(int iters, double eps)
|
|
|
|
{
|
|
|
|
return TermCriteria(TermCriteria::MAX_ITER + (eps > 0 ? TermCriteria::EPS : 0), iters, eps);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_and_save_classifier(const Ptr<StatModel>& model,
|
|
|
|
const Mat& data, const Mat& responses,
|
|
|
|
int ntrain_samples, int rdelta,
|
|
|
|
const string& filename_to_save)
|
|
|
|
{
|
|
|
|
int i, nsamples_all = data.rows;
|
|
|
|
double train_hr = 0, test_hr = 0;
|
|
|
|
|
|
|
|
// compute prediction error on train and test data
|
|
|
|
for( i = 0; i < nsamples_all; i++ )
|
|
|
|
{
|
|
|
|
Mat sample = data.row(i);
|
|
|
|
|
|
|
|
float r = model->predict( sample );
|
|
|
|
r = std::abs(r + rdelta - responses.at<int>(i)) <= FLT_EPSILON ? 1.f : 0.f;
|
|
|
|
|
|
|
|
if( i < ntrain_samples )
|
|
|
|
train_hr += r;
|
|
|
|
else
|
|
|
|
test_hr += r;
|
|
|
|
}
|
|
|
|
|
|
|
|
test_hr /= nsamples_all - ntrain_samples;
|
|
|
|
train_hr = ntrain_samples > 0 ? train_hr/ntrain_samples : 1.;
|
|
|
|
|
|
|
|
printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n",
|
|
|
|
train_hr*100., test_hr*100. );
|
|
|
|
|
|
|
|
if( !filename_to_save.empty() )
|
|
|
|
{
|
|
|
|
model->save( filename_to_save );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static bool
|
|
|
|
build_rtrees_classifier( const string& data_filename,
|
|
|
|
const string& filename_to_save,
|
|
|
|
const string& filename_to_load )
|
|
|
|
{
|
|
|
|
Mat data;
|
|
|
|
Mat responses;
|
|
|
|
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
|
|
|
|
if( !ok )
|
|
|
|
return ok;
|
|
|
|
|
|
|
|
Ptr<RTrees> model;
|
|
|
|
|
|
|
|
int nsamples_all = data.rows;
|
|
|
|
int ntrain_samples = (int)(nsamples_all*0.8);
|
|
|
|
|
|
|
|
// Create or load Random Trees classifier
|
|
|
|
if( !filename_to_load.empty() )
|
|
|
|
{
|
|
|
|
model = load_classifier<RTrees>(filename_to_load);
|
|
|
|
if( model.empty() )
|
|
|
|
return false;
|
|
|
|
ntrain_samples = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// create classifier by using <data> and <responses>
|
|
|
|
cout << "Training the classifier ...\n";
|
|
|
|
// Params( int maxDepth, int minSampleCount,
|
|
|
|
// double regressionAccuracy, bool useSurrogates,
|
|
|
|
// int maxCategories, const Mat& priors,
|
|
|
|
// bool calcVarImportance, int nactiveVars,
|
|
|
|
// TermCriteria termCrit );
|
|
|
|
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
|
|
|
|
model = RTrees::create();
|
|
|
|
model->setMaxDepth(10);
|
|
|
|
model->setMinSampleCount(10);
|
|
|
|
model->setRegressionAccuracy(0);
|
|
|
|
model->setUseSurrogates(false);
|
|
|
|
model->setMaxCategories(15);
|
|
|
|
model->setPriors(Mat());
|
|
|
|
model->setCalculateVarImportance(true);
|
|
|
|
model->setActiveVarCount(4);
|
|
|
|
model->setTermCriteria(TC(100,0.01f));
|
|
|
|
model->train(tdata);
|
|
|
|
cout << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
test_and_save_classifier(model, data, responses, ntrain_samples, 0, filename_to_save);
|
|
|
|
cout << "Number of trees: " << model->getRoots().size() << endl;
|
|
|
|
|
|
|
|
// Print variable importance
|
|
|
|
Mat var_importance = model->getVarImportance();
|
|
|
|
if( !var_importance.empty() )
|
|
|
|
{
|
|
|
|
double rt_imp_sum = sum( var_importance )[0];
|
|
|
|
printf("var#\timportance (in %%):\n");
|
|
|
|
int i, n = (int)var_importance.total();
|
|
|
|
for( i = 0; i < n; i++ )
|
|
|
|
printf( "%-2d\t%-4.1f\n", i, 100.f*var_importance.at<float>(i)/rt_imp_sum);
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static bool
|
|
|
|
build_boost_classifier( const string& data_filename,
|
|
|
|
const string& filename_to_save,
|
|
|
|
const string& filename_to_load )
|
|
|
|
{
|
|
|
|
const int class_count = 26;
|
|
|
|
Mat data;
|
|
|
|
Mat responses;
|
|
|
|
Mat weak_responses;
|
|
|
|
|
|
|
|
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
|
|
|
|
if( !ok )
|
|
|
|
return ok;
|
|
|
|
|
|
|
|
int i, j, k;
|
|
|
|
Ptr<Boost> model;
|
|
|
|
|
|
|
|
int nsamples_all = data.rows;
|
|
|
|
int ntrain_samples = (int)(nsamples_all*0.5);
|
|
|
|
int var_count = data.cols;
|
|
|
|
|
|
|
|
// Create or load Boosted Tree classifier
|
|
|
|
if( !filename_to_load.empty() )
|
|
|
|
{
|
|
|
|
model = load_classifier<Boost>(filename_to_load);
|
|
|
|
if( model.empty() )
|
|
|
|
return false;
|
|
|
|
ntrain_samples = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
//
|
|
|
|
// As currently boosted tree classifier in MLL can only be trained
|
|
|
|
// for 2-class problems, we transform the training database by
|
|
|
|
// "unrolling" each training sample as many times as the number of
|
|
|
|
// classes (26) that we have.
|
|
|
|
//
|
|
|
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
|
|
|
|
Mat new_data( ntrain_samples*class_count, var_count + 1, CV_32F );
|
|
|
|
Mat new_responses( ntrain_samples*class_count, 1, CV_32S );
|
|
|
|
|
|
|
|
// 1. unroll the database type mask
|
|
|
|
printf( "Unrolling the database...\n");
|
|
|
|
for( i = 0; i < ntrain_samples; i++ )
|
|
|
|
{
|
|
|
|
const float* data_row = data.ptr<float>(i);
|
|
|
|
for( j = 0; j < class_count; j++ )
|
|
|
|
{
|
|
|
|
float* new_data_row = (float*)new_data.ptr<float>(i*class_count+j);
|
|
|
|
memcpy(new_data_row, data_row, var_count*sizeof(data_row[0]));
|
|
|
|
new_data_row[var_count] = (float)j;
|
|
|
|
new_responses.at<int>(i*class_count + j) = responses.at<int>(i) == j+'A';
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat var_type( 1, var_count + 2, CV_8U );
|
|
|
|
var_type.setTo(Scalar::all(VAR_ORDERED));
|
|
|
|
var_type.at<uchar>(var_count) = var_type.at<uchar>(var_count+1) = VAR_CATEGORICAL;
|
|
|
|
|
|
|
|
Ptr<TrainData> tdata = TrainData::create(new_data, ROW_SAMPLE, new_responses,
|
|
|
|
noArray(), noArray(), noArray(), var_type);
|
|
|
|
vector<double> priors(2);
|
|
|
|
priors[0] = 1;
|
|
|
|
priors[1] = 26;
|
|
|
|
|
|
|
|
cout << "Training the classifier (may take a few minutes)...\n";
|
|
|
|
model = Boost::create();
|
|
|
|
model->setBoostType(Boost::GENTLE);
|
|
|
|
model->setWeakCount(100);
|
|
|
|
model->setWeightTrimRate(0.95);
|
|
|
|
model->setMaxDepth(5);
|
|
|
|
model->setUseSurrogates(false);
|
|
|
|
model->setPriors(Mat(priors));
|
|
|
|
model->train(tdata);
|
|
|
|
cout << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat temp_sample( 1, var_count + 1, CV_32F );
|
|
|
|
float* tptr = temp_sample.ptr<float>();
|
|
|
|
|
|
|
|
// compute prediction error on train and test data
|
|
|
|
double train_hr = 0, test_hr = 0;
|
|
|
|
for( i = 0; i < nsamples_all; i++ )
|
|
|
|
{
|
|
|
|
int best_class = 0;
|
|
|
|
double max_sum = -DBL_MAX;
|
|
|
|
const float* ptr = data.ptr<float>(i);
|
|
|
|
for( k = 0; k < var_count; k++ )
|
|
|
|
tptr[k] = ptr[k];
|
|
|
|
|
|
|
|
for( j = 0; j < class_count; j++ )
|
|
|
|
{
|
|
|
|
tptr[var_count] = (float)j;
|
|
|
|
float s = model->predict( temp_sample, noArray(), StatModel::RAW_OUTPUT );
|
|
|
|
if( max_sum < s )
|
|
|
|
{
|
|
|
|
max_sum = s;
|
|
|
|
best_class = j + 'A';
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
double r = std::abs(best_class - responses.at<int>(i)) < FLT_EPSILON ? 1 : 0;
|
|
|
|
if( i < ntrain_samples )
|
|
|
|
train_hr += r;
|
|
|
|
else
|
|
|
|
test_hr += r;
|
|
|
|
}
|
|
|
|
|
|
|
|
test_hr /= nsamples_all-ntrain_samples;
|
|
|
|
train_hr = ntrain_samples > 0 ? train_hr/ntrain_samples : 1.;
|
|
|
|
printf( "Recognition rate: train = %.1f%%, test = %.1f%%\n",
|
|
|
|
train_hr*100., test_hr*100. );
|
|
|
|
|
|
|
|
cout << "Number of trees: " << model->getRoots().size() << endl;
|
|
|
|
|
|
|
|
// Save classifier to file if needed
|
|
|
|
if( !filename_to_save.empty() )
|
|
|
|
model->save( filename_to_save );
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static bool
|
|
|
|
build_mlp_classifier( const string& data_filename,
|
|
|
|
const string& filename_to_save,
|
|
|
|
const string& filename_to_load )
|
|
|
|
{
|
|
|
|
const int class_count = 26;
|
|
|
|
Mat data;
|
|
|
|
Mat responses;
|
|
|
|
|
|
|
|
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
|
|
|
|
if( !ok )
|
|
|
|
return ok;
|
|
|
|
|
|
|
|
Ptr<ANN_MLP> model;
|
|
|
|
|
|
|
|
int nsamples_all = data.rows;
|
|
|
|
int ntrain_samples = (int)(nsamples_all*0.8);
|
|
|
|
|
|
|
|
// Create or load MLP classifier
|
|
|
|
if( !filename_to_load.empty() )
|
|
|
|
{
|
|
|
|
model = load_classifier<ANN_MLP>(filename_to_load);
|
|
|
|
if( model.empty() )
|
|
|
|
return false;
|
|
|
|
ntrain_samples = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
//
|
|
|
|
// MLP does not support categorical variables by explicitly.
|
|
|
|
// So, instead of the output class label, we will use
|
|
|
|
// a binary vector of <class_count> components for training and,
|
|
|
|
// therefore, MLP will give us a vector of "probabilities" at the
|
|
|
|
// prediction stage
|
|
|
|
//
|
|
|
|
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
|
|
|
|
Mat train_data = data.rowRange(0, ntrain_samples);
|
|
|
|
Mat train_responses = Mat::zeros( ntrain_samples, class_count, CV_32F );
|
|
|
|
|
|
|
|
// 1. unroll the responses
|
|
|
|
cout << "Unrolling the responses...\n";
|
|
|
|
for( int i = 0; i < ntrain_samples; i++ )
|
|
|
|
{
|
|
|
|
int cls_label = responses.at<int>(i) - 'A';
|
|
|
|
train_responses.at<float>(i, cls_label) = 1.f;
|
|
|
|
}
|
|
|
|
|
|
|
|
// 2. train classifier
|
|
|
|
int layer_sz[] = { data.cols, 100, 100, class_count };
|
|
|
|
int nlayers = (int)(sizeof(layer_sz)/sizeof(layer_sz[0]));
|
|
|
|
Mat layer_sizes( 1, nlayers, CV_32S, layer_sz );
|
|
|
|
|
|
|
|
#if 1
|
|
|
|
int method = ANN_MLP::BACKPROP;
|
|
|
|
double method_param = 0.001;
|
|
|
|
int max_iter = 300;
|
|
|
|
#else
|
|
|
|
int method = ANN_MLP::RPROP;
|
|
|
|
double method_param = 0.1;
|
|
|
|
int max_iter = 1000;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Ptr<TrainData> tdata = TrainData::create(train_data, ROW_SAMPLE, train_responses);
|
|
|
|
|
|
|
|
cout << "Training the classifier (may take a few minutes)...\n";
|
|
|
|
model = ANN_MLP::create();
|
|
|
|
model->setLayerSizes(layer_sizes);
|
|
|
|
model->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0, 0);
|
|
|
|
model->setTermCriteria(TC(max_iter,0));
|
|
|
|
model->setTrainMethod(method, method_param);
|
|
|
|
model->train(tdata);
|
|
|
|
cout << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
test_and_save_classifier(model, data, responses, ntrain_samples, 'A', filename_to_save);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool
|
|
|
|
build_knearest_classifier( const string& data_filename, int K )
|
|
|
|
{
|
|
|
|
Mat data;
|
|
|
|
Mat responses;
|
|
|
|
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
|
|
|
|
if( !ok )
|
|
|
|
return ok;
|
|
|
|
|
|
|
|
|
|
|
|
int nsamples_all = data.rows;
|
|
|
|
int ntrain_samples = (int)(nsamples_all*0.8);
|
|
|
|
|
|
|
|
// create classifier by using <data> and <responses>
|
|
|
|
cout << "Training the classifier ...\n";
|
|
|
|
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
|
|
|
|
Ptr<KNearest> model = KNearest::create();
|
|
|
|
model->setDefaultK(K);
|
|
|
|
model->setIsClassifier(true);
|
|
|
|
model->train(tdata);
|
|
|
|
cout << endl;
|
|
|
|
|
|
|
|
test_and_save_classifier(model, data, responses, ntrain_samples, 0, string());
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool
|
|
|
|
build_nbayes_classifier( const string& data_filename )
|
|
|
|
{
|
|
|
|
Mat data;
|
|
|
|
Mat responses;
|
|
|
|
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
|
|
|
|
if( !ok )
|
|
|
|
return ok;
|
|
|
|
|
|
|
|
Ptr<NormalBayesClassifier> model;
|
|
|
|
|
|
|
|
int nsamples_all = data.rows;
|
|
|
|
int ntrain_samples = (int)(nsamples_all*0.8);
|
|
|
|
|
|
|
|
// create classifier by using <data> and <responses>
|
|
|
|
cout << "Training the classifier ...\n";
|
|
|
|
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
|
|
|
|
model = NormalBayesClassifier::create();
|
|
|
|
model->train(tdata);
|
|
|
|
cout << endl;
|
|
|
|
|
|
|
|
test_and_save_classifier(model, data, responses, ntrain_samples, 0, string());
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool
|
|
|
|
build_svm_classifier( const string& data_filename,
|
|
|
|
const string& filename_to_save,
|
|
|
|
const string& filename_to_load )
|
|
|
|
{
|
|
|
|
Mat data;
|
|
|
|
Mat responses;
|
|
|
|
bool ok = read_num_class_data( data_filename, 16, &data, &responses );
|
|
|
|
if( !ok )
|
|
|
|
return ok;
|
|
|
|
|
|
|
|
Ptr<SVM> model;
|
|
|
|
|
|
|
|
int nsamples_all = data.rows;
|
|
|
|
int ntrain_samples = (int)(nsamples_all*0.8);
|
|
|
|
|
|
|
|
// Create or load Random Trees classifier
|
|
|
|
if( !filename_to_load.empty() )
|
|
|
|
{
|
|
|
|
model = load_classifier<SVM>(filename_to_load);
|
|
|
|
if( model.empty() )
|
|
|
|
return false;
|
|
|
|
ntrain_samples = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
// create classifier by using <data> and <responses>
|
|
|
|
cout << "Training the classifier ...\n";
|
|
|
|
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
|
|
|
|
model = SVM::create();
|
|
|
|
model->setType(SVM::C_SVC);
|
|
|
|
model->setKernel(SVM::LINEAR);
|
|
|
|
model->setC(1);
|
|
|
|
model->train(tdata);
|
|
|
|
cout << endl;
|
|
|
|
}
|
|
|
|
|
|
|
|
test_and_save_classifier(model, data, responses, ntrain_samples, 0, filename_to_save);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
int main( int argc, char *argv[] )
|
|
|
|
{
|
|
|
|
string filename_to_save = "";
|
|
|
|
string filename_to_load = "";
|
|
|
|
string data_filename;
|
|
|
|
int method = 0;
|
|
|
|
|
|
|
|
cv::CommandLineParser parser(argc, argv, "{data|letter-recognition.data|}{save||}{load||}{boost||}"
|
|
|
|
"{mlp||}{knn knearest||}{nbayes||}{svm||}");
|
|
|
|
data_filename = samples::findFile(parser.get<string>("data"));
|
|
|
|
if (parser.has("save"))
|
|
|
|
filename_to_save = parser.get<string>("save");
|
|
|
|
if (parser.has("load"))
|
|
|
|
filename_to_load = samples::findFile(parser.get<string>("load"));
|
|
|
|
if (parser.has("boost"))
|
|
|
|
method = 1;
|
|
|
|
else if (parser.has("mlp"))
|
|
|
|
method = 2;
|
|
|
|
else if (parser.has("knearest"))
|
|
|
|
method = 3;
|
|
|
|
else if (parser.has("nbayes"))
|
|
|
|
method = 4;
|
|
|
|
else if (parser.has("svm"))
|
|
|
|
method = 5;
|
|
|
|
|
|
|
|
help();
|
|
|
|
|
|
|
|
if( (method == 0 ?
|
|
|
|
build_rtrees_classifier( data_filename, filename_to_save, filename_to_load ) :
|
|
|
|
method == 1 ?
|
|
|
|
build_boost_classifier( data_filename, filename_to_save, filename_to_load ) :
|
|
|
|
method == 2 ?
|
|
|
|
build_mlp_classifier( data_filename, filename_to_save, filename_to_load ) :
|
|
|
|
method == 3 ?
|
|
|
|
build_knearest_classifier( data_filename, 10 ) :
|
|
|
|
method == 4 ?
|
|
|
|
build_nbayes_classifier( data_filename) :
|
|
|
|
method == 5 ?
|
|
|
|
build_svm_classifier( data_filename, filename_to_save, filename_to_load ):
|
|
|
|
-1) < 0)
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|