|
|
|
from __future__ import print_function
|
|
|
|
from abc import ABCMeta, abstractmethod
|
|
|
|
import numpy as np
|
|
|
|
import sys
|
|
|
|
import argparse
|
|
|
|
import time
|
|
|
|
|
|
|
|
from imagenet_cls_test_alexnet import CaffeModel, DnnCaffeModel
|
|
|
|
try:
|
|
|
|
import cv2 as cv
|
|
|
|
except ImportError:
|
|
|
|
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
|
|
|
|
'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
|
|
|
|
|
|
|
|
|
|
|
|
def get_metrics(conf_mat):
|
|
|
|
pix_accuracy = np.trace(conf_mat) / np.sum(conf_mat)
|
|
|
|
t = np.sum(conf_mat, 1)
|
|
|
|
num_cl = np.count_nonzero(t)
|
|
|
|
assert num_cl
|
|
|
|
mean_accuracy = np.sum(np.nan_to_num(np.divide(np.diagonal(conf_mat), t))) / num_cl
|
|
|
|
col_sum = np.sum(conf_mat, 0)
|
|
|
|
mean_iou = np.sum(
|
|
|
|
np.nan_to_num(np.divide(np.diagonal(conf_mat), (t + col_sum - np.diagonal(conf_mat))))) / num_cl
|
|
|
|
return pix_accuracy, mean_accuracy, mean_iou
|
|
|
|
|
|
|
|
|
|
|
|
def eval_segm_result(net_out):
|
|
|
|
assert type(net_out) is np.ndarray
|
|
|
|
assert len(net_out.shape) == 4
|
|
|
|
|
|
|
|
channels_dim = 1
|
|
|
|
y_dim = channels_dim + 1
|
|
|
|
x_dim = y_dim + 1
|
|
|
|
res = np.zeros(net_out.shape).astype(np.int)
|
|
|
|
for i in range(net_out.shape[y_dim]):
|
|
|
|
for j in range(net_out.shape[x_dim]):
|
|
|
|
max_ch = np.argmax(net_out[..., i, j])
|
|
|
|
res[0, max_ch, i, j] = 1
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
def get_conf_mat(gt, prob):
|
|
|
|
assert type(gt) is np.ndarray
|
|
|
|
assert type(prob) is np.ndarray
|
|
|
|
|
|
|
|
conf_mat = np.zeros((gt.shape[0], gt.shape[0]))
|
|
|
|
for ch_gt in range(conf_mat.shape[0]):
|
|
|
|
gt_channel = gt[ch_gt, ...]
|
|
|
|
for ch_pr in range(conf_mat.shape[1]):
|
|
|
|
prob_channel = prob[ch_pr, ...]
|
|
|
|
conf_mat[ch_gt][ch_pr] = np.count_nonzero(np.multiply(gt_channel, prob_channel))
|
|
|
|
return conf_mat
|
|
|
|
|
|
|
|
|
|
|
|
class MeanChannelsPreproc:
|
|
|
|
def __init__(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def process(img):
|
|
|
|
image_data = np.array(img).transpose(2, 0, 1).astype(np.float32)
|
|
|
|
mean = np.ones(image_data.shape)
|
|
|
|
mean[0] *= 104
|
|
|
|
mean[1] *= 117
|
|
|
|
mean[2] *= 123
|
|
|
|
image_data -= mean
|
|
|
|
image_data = np.expand_dims(image_data, 0)
|
|
|
|
return image_data
|
|
|
|
|
|
|
|
|
|
|
|
class DatasetImageFetch(object):
|
|
|
|
__metaclass__ = ABCMeta
|
|
|
|
data_prepoc = object
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def __iter__(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
def next(self):
|
|
|
|
pass
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def pix_to_c(pix):
|
|
|
|
return pix[0] * 256 * 256 + pix[1] * 256 + pix[2]
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def color_to_gt(color_img, colors):
|
|
|
|
num_classes = len(colors)
|
|
|
|
gt = np.zeros((num_classes, color_img.shape[0], color_img.shape[1])).astype(np.int)
|
|
|
|
for img_y in range(color_img.shape[0]):
|
|
|
|
for img_x in range(color_img.shape[1]):
|
|
|
|
c = DatasetImageFetch.pix_to_c(color_img[img_y][img_x])
|
|
|
|
if c in colors:
|
|
|
|
cls = colors.index(c)
|
|
|
|
gt[cls][img_y][img_x] = 1
|
|
|
|
return gt
|
|
|
|
|
|
|
|
|
|
|
|
class PASCALDataFetch(DatasetImageFetch):
|
|
|
|
img_dir = ''
|
|
|
|
segm_dir = ''
|
|
|
|
names = []
|
|
|
|
colors = []
|
|
|
|
i = 0
|
|
|
|
|
|
|
|
def __init__(self, img_dir, segm_dir, names_file, segm_cls_colors_file, preproc):
|
|
|
|
self.img_dir = img_dir
|
|
|
|
self.segm_dir = segm_dir
|
|
|
|
self.colors = self.read_colors(segm_cls_colors_file)
|
|
|
|
self.data_prepoc = preproc
|
|
|
|
self.i = 0
|
|
|
|
|
|
|
|
with open(names_file) as f:
|
|
|
|
for l in f.readlines():
|
|
|
|
self.names.append(l.rstrip())
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def read_colors(img_classes_file):
|
|
|
|
result = []
|
|
|
|
with open(img_classes_file) as f:
|
|
|
|
for l in f.readlines():
|
|
|
|
color = np.array(map(int, l.split()[1:]))
|
|
|
|
result.append(DatasetImageFetch.pix_to_c(color))
|
|
|
|
return result
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
return self
|
|
|
|
|
|
|
|
def next(self):
|
|
|
|
if self.i < len(self.names):
|
|
|
|
name = self.names[self.i]
|
|
|
|
self.i += 1
|
|
|
|
segm_file = self.segm_dir + name + ".png"
|
|
|
|
img_file = self.img_dir + name + ".jpg"
|
|
|
|
gt = self.color_to_gt(cv.imread(segm_file, cv.IMREAD_COLOR)[:, :, ::-1], self.colors)
|
|
|
|
img = self.data_prepoc.process(cv.imread(img_file, cv.IMREAD_COLOR)[:, :, ::-1])
|
|
|
|
return img, gt
|
|
|
|
else:
|
|
|
|
self.i = 0
|
|
|
|
raise StopIteration
|
|
|
|
|
|
|
|
def get_num_classes(self):
|
|
|
|
return len(self.colors)
|
|
|
|
|
|
|
|
|
|
|
|
class SemSegmEvaluation:
|
|
|
|
log = sys.stdout
|
|
|
|
|
|
|
|
def __init__(self, log_path,):
|
|
|
|
self.log = open(log_path, 'w')
|
|
|
|
|
|
|
|
def process(self, frameworks, data_fetcher):
|
|
|
|
samples_handled = 0
|
|
|
|
|
|
|
|
conf_mats = [np.zeros((data_fetcher.get_num_classes(), data_fetcher.get_num_classes())) for i in range(len(frameworks))]
|
|
|
|
blobs_l1_diff = [0] * len(frameworks)
|
|
|
|
blobs_l1_diff_count = [0] * len(frameworks)
|
|
|
|
blobs_l_inf_diff = [sys.float_info.min] * len(frameworks)
|
|
|
|
inference_time = [0.0] * len(frameworks)
|
|
|
|
|
|
|
|
for in_blob, gt in data_fetcher:
|
|
|
|
frameworks_out = []
|
|
|
|
samples_handled += 1
|
|
|
|
for i in range(len(frameworks)):
|
|
|
|
start = time.time()
|
|
|
|
out = frameworks[i].get_output(in_blob)
|
|
|
|
end = time.time()
|
|
|
|
segm = eval_segm_result(out)
|
|
|
|
conf_mats[i] += get_conf_mat(gt, segm[0])
|
|
|
|
frameworks_out.append(out)
|
|
|
|
inference_time[i] += end - start
|
|
|
|
|
|
|
|
pix_acc, mean_acc, miou = get_metrics(conf_mats[i])
|
|
|
|
|
|
|
|
name = frameworks[i].get_name()
|
|
|
|
print(samples_handled, 'Pixel accuracy, %s:' % name, 100 * pix_acc, file=self.log)
|
|
|
|
print(samples_handled, 'Mean accuracy, %s:' % name, 100 * mean_acc, file=self.log)
|
|
|
|
print(samples_handled, 'Mean IOU, %s:' % name, 100 * miou, file=self.log)
|
|
|
|
print("Inference time, ms ", \
|
|
|
|
frameworks[i].get_name(), inference_time[i] / samples_handled * 1000, file=self.log)
|
|
|
|
|
|
|
|
for i in range(1, len(frameworks)):
|
|
|
|
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
|
|
|
|
diff = np.abs(frameworks_out[0] - frameworks_out[i])
|
|
|
|
l1_diff = np.sum(diff) / diff.size
|
|
|
|
print(samples_handled, "L1 difference", log_str, l1_diff, file=self.log)
|
|
|
|
blobs_l1_diff[i] += l1_diff
|
|
|
|
blobs_l1_diff_count[i] += 1
|
|
|
|
if np.max(diff) > blobs_l_inf_diff[i]:
|
|
|
|
blobs_l_inf_diff[i] = np.max(diff)
|
|
|
|
print(samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i], file=self.log)
|
|
|
|
|
|
|
|
self.log.flush()
|
|
|
|
|
|
|
|
for i in range(1, len(blobs_l1_diff)):
|
|
|
|
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
|
|
|
|
print('Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i], file=self.log)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--imgs_dir", help="path to PASCAL VOC 2012 images dir, data/VOC2012/JPEGImages")
|
|
|
|
parser.add_argument("--segm_dir", help="path to PASCAL VOC 2012 segmentation dir, data/VOC2012/SegmentationClass/")
|
|
|
|
parser.add_argument("--val_names", help="path to file with validation set image names, download it here: "
|
|
|
|
"https://github.com/shelhamer/fcn.berkeleyvision.org/blob/master/data/pascal/seg11valid.txt")
|
|
|
|
parser.add_argument("--cls_file", help="path to file with colors for classes, download it here: "
|
|
|
|
"https://github.com/opencv/opencv/blob/3.4/samples/data/dnn/pascal-classes.txt")
|
|
|
|
parser.add_argument("--prototxt", help="path to caffe prototxt, download it here: "
|
|
|
|
"https://github.com/opencv/opencv/blob/3.4/samples/data/dnn/fcn8s-heavy-pascal.prototxt")
|
|
|
|
parser.add_argument("--caffemodel", help="path to caffemodel file, download it here: "
|
|
|
|
"http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel")
|
|
|
|
parser.add_argument("--log", help="path to logging file")
|
|
|
|
parser.add_argument("--in_blob", help="name for input blob", default='data')
|
|
|
|
parser.add_argument("--out_blob", help="name for output blob", default='score')
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
prep = MeanChannelsPreproc()
|
|
|
|
df = PASCALDataFetch(args.imgs_dir, args.segm_dir, args.val_names, args.cls_file, prep)
|
|
|
|
|
|
|
|
fw = [CaffeModel(args.prototxt, args.caffemodel, args.in_blob, args.out_blob, True),
|
|
|
|
DnnCaffeModel(args.prototxt, args.caffemodel, '', args.out_blob)]
|
|
|
|
|
|
|
|
segm_eval = SemSegmEvaluation(args.log)
|
|
|
|
segm_eval.process(fw, df)
|