|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
static SparseMat cvTsGetRandomSparseMat(int dims, const int* sz, int type,
|
|
|
|
int nzcount, double a, double b, RNG& rng)
|
|
|
|
{
|
|
|
|
SparseMat m(dims, sz, type);
|
|
|
|
int i, j;
|
|
|
|
CV_Assert(CV_MAT_CN(type) == 1);
|
|
|
|
for( i = 0; i < nzcount; i++ )
|
|
|
|
{
|
|
|
|
int idx[CV_MAX_DIM];
|
|
|
|
for( j = 0; j < dims; j++ )
|
|
|
|
idx[j] = cvtest::randInt(rng) % sz[j];
|
|
|
|
double val = cvtest::randReal(rng)*(b - a) + a;
|
|
|
|
uchar* ptr = m.ptr(idx, true, 0);
|
|
|
|
if( type == CV_8U )
|
|
|
|
*(uchar*)ptr = saturate_cast<uchar>(val);
|
|
|
|
else if( type == CV_8S )
|
|
|
|
*(schar*)ptr = saturate_cast<schar>(val);
|
|
|
|
else if( type == CV_16U )
|
|
|
|
*(ushort*)ptr = saturate_cast<ushort>(val);
|
|
|
|
else if( type == CV_16S )
|
|
|
|
*(short*)ptr = saturate_cast<short>(val);
|
|
|
|
else if( type == CV_32S )
|
|
|
|
*(int*)ptr = saturate_cast<int>(val);
|
|
|
|
else if( type == CV_32F )
|
|
|
|
*(float*)ptr = saturate_cast<float>(val);
|
|
|
|
else
|
|
|
|
*(double*)ptr = saturate_cast<double>(val);
|
|
|
|
}
|
|
|
|
|
|
|
|
return m;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool cvTsCheckSparse(const CvSparseMat* m1, const CvSparseMat* m2, double eps)
|
|
|
|
{
|
|
|
|
CvSparseMatIterator it1;
|
|
|
|
CvSparseNode* node1;
|
|
|
|
int depth = CV_MAT_DEPTH(m1->type);
|
|
|
|
|
|
|
|
if( m1->heap->active_count != m2->heap->active_count ||
|
|
|
|
m1->dims != m2->dims || CV_MAT_TYPE(m1->type) != CV_MAT_TYPE(m2->type) )
|
|
|
|
return false;
|
|
|
|
|
|
|
|
for( node1 = cvInitSparseMatIterator( m1, &it1 );
|
|
|
|
node1 != 0; node1 = cvGetNextSparseNode( &it1 ))
|
|
|
|
{
|
|
|
|
uchar* v1 = (uchar*)CV_NODE_VAL(m1,node1);
|
|
|
|
uchar* v2 = cvPtrND( m2, CV_NODE_IDX(m1,node1), 0, 0, &node1->hashval );
|
|
|
|
if( !v2 )
|
|
|
|
return false;
|
|
|
|
if( depth == CV_8U || depth == CV_8S )
|
|
|
|
{
|
|
|
|
if( *v1 != *v2 )
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
else if( depth == CV_16U || depth == CV_16S )
|
|
|
|
{
|
|
|
|
if( *(ushort*)v1 != *(ushort*)v2 )
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
else if( depth == CV_32S )
|
|
|
|
{
|
|
|
|
if( *(int*)v1 != *(int*)v2 )
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
else if( depth == CV_32F )
|
|
|
|
{
|
|
|
|
if( fabs(*(float*)v1 - *(float*)v2) > eps*(fabs(*(float*)v2) + 1) )
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
else if( fabs(*(double*)v1 - *(double*)v2) > eps*(fabs(*(double*)v2) + 1) )
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class Core_IOTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
Core_IOTest() { }
|
|
|
|
protected:
|
|
|
|
void run(int)
|
|
|
|
{
|
|
|
|
double ranges[][2] = {{0, 256}, {-128, 128}, {0, 65536}, {-32768, 32768},
|
|
|
|
{-1000000, 1000000}, {-10, 10}, {-10, 10}};
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
RNG rng0;
|
|
|
|
test_case_count = 4;
|
|
|
|
int progress = 0;
|
|
|
|
MemStorage storage(cvCreateMemStorage(0));
|
|
|
|
|
|
|
|
for( int idx = 0; idx < test_case_count; idx++ )
|
|
|
|
{
|
|
|
|
ts->update_context( this, idx, false );
|
|
|
|
progress = update_progress( progress, idx, test_case_count, 0 );
|
|
|
|
|
|
|
|
cvClearMemStorage(storage);
|
|
|
|
|
|
|
|
bool mem = (idx % 4) >= 2;
|
|
|
|
string filename = tempfile(idx % 2 ? ".yml" : ".xml");
|
|
|
|
|
|
|
|
FileStorage fs(filename, FileStorage::WRITE + (mem ? FileStorage::MEMORY : 0));
|
|
|
|
|
|
|
|
int test_int = (int)cvtest::randInt(rng);
|
|
|
|
double test_real = (cvtest::randInt(rng)%2?1:-1)*exp(cvtest::randReal(rng)*18-9);
|
|
|
|
string test_string = "vw wv23424rt\"&<>&'@#$@$%$%&%IJUKYILFD@#$@%$&*&() ";
|
|
|
|
|
|
|
|
int depth = cvtest::randInt(rng) % (CV_64F+1);
|
|
|
|
int cn = cvtest::randInt(rng) % 4 + 1;
|
|
|
|
Mat test_mat(cvtest::randInt(rng)%30+1, cvtest::randInt(rng)%30+1, CV_MAKETYPE(depth, cn));
|
|
|
|
|
|
|
|
rng0.fill(test_mat, CV_RAND_UNI, Scalar::all(ranges[depth][0]), Scalar::all(ranges[depth][1]));
|
|
|
|
if( depth >= CV_32F )
|
|
|
|
{
|
|
|
|
exp(test_mat, test_mat);
|
|
|
|
Mat test_mat_scale(test_mat.size(), test_mat.type());
|
|
|
|
rng0.fill(test_mat_scale, CV_RAND_UNI, Scalar::all(-1), Scalar::all(1));
|
|
|
|
multiply(test_mat, test_mat_scale, test_mat);
|
|
|
|
}
|
|
|
|
|
|
|
|
CvSeq* seq = cvCreateSeq(test_mat.type(), (int)sizeof(CvSeq),
|
|
|
|
(int)test_mat.elemSize(), storage);
|
|
|
|
cvSeqPushMulti(seq, test_mat.ptr(), test_mat.cols*test_mat.rows);
|
|
|
|
|
|
|
|
CvGraph* graph = cvCreateGraph( CV_ORIENTED_GRAPH,
|
|
|
|
sizeof(CvGraph), sizeof(CvGraphVtx),
|
|
|
|
sizeof(CvGraphEdge), storage );
|
|
|
|
int edges[][2] = {{0,1},{1,2},{2,0},{0,3},{3,4},{4,1}};
|
|
|
|
int i, vcount = 5, ecount = 6;
|
|
|
|
for( i = 0; i < vcount; i++ )
|
|
|
|
cvGraphAddVtx(graph);
|
|
|
|
for( i = 0; i < ecount; i++ )
|
|
|
|
{
|
|
|
|
CvGraphEdge* edge;
|
|
|
|
cvGraphAddEdge(graph, edges[i][0], edges[i][1], 0, &edge);
|
|
|
|
edge->weight = (float)(i+1);
|
|
|
|
}
|
|
|
|
|
|
|
|
depth = cvtest::randInt(rng) % (CV_64F+1);
|
|
|
|
cn = cvtest::randInt(rng) % 4 + 1;
|
|
|
|
int sz[] = {
|
|
|
|
static_cast<int>(cvtest::randInt(rng)%10+1),
|
|
|
|
static_cast<int>(cvtest::randInt(rng)%10+1),
|
|
|
|
static_cast<int>(cvtest::randInt(rng)%10+1),
|
|
|
|
};
|
|
|
|
MatND test_mat_nd(3, sz, CV_MAKETYPE(depth, cn));
|
|
|
|
|
|
|
|
rng0.fill(test_mat_nd, CV_RAND_UNI, Scalar::all(ranges[depth][0]), Scalar::all(ranges[depth][1]));
|
|
|
|
if( depth >= CV_32F )
|
|
|
|
{
|
|
|
|
exp(test_mat_nd, test_mat_nd);
|
|
|
|
MatND test_mat_scale(test_mat_nd.dims, test_mat_nd.size, test_mat_nd.type());
|
|
|
|
rng0.fill(test_mat_scale, CV_RAND_UNI, Scalar::all(-1), Scalar::all(1));
|
|
|
|
multiply(test_mat_nd, test_mat_scale, test_mat_nd);
|
|
|
|
}
|
|
|
|
|
|
|
|
int ssz[] = {
|
|
|
|
static_cast<int>(cvtest::randInt(rng)%10+1),
|
|
|
|
static_cast<int>(cvtest::randInt(rng)%10+1),
|
|
|
|
static_cast<int>(cvtest::randInt(rng)%10+1),
|
|
|
|
static_cast<int>(cvtest::randInt(rng)%10+1),
|
|
|
|
};
|
|
|
|
SparseMat test_sparse_mat = cvTsGetRandomSparseMat(4, ssz, cvtest::randInt(rng)%(CV_64F+1),
|
|
|
|
cvtest::randInt(rng) % 10000, 0, 100, rng);
|
|
|
|
|
|
|
|
fs << "test_int" << test_int << "test_real" << test_real << "test_string" << test_string;
|
|
|
|
fs << "test_mat" << test_mat;
|
|
|
|
fs << "test_mat_nd" << test_mat_nd;
|
|
|
|
fs << "test_sparse_mat" << test_sparse_mat;
|
|
|
|
|
|
|
|
fs << "test_list" << "[" << 0.0000000000001 << 2 << CV_PI << -3435345 << "2-502 2-029 3egegeg" <<
|
|
|
|
"{:" << "month" << 12 << "day" << 31 << "year" << 1969 << "}" << "]";
|
|
|
|
fs << "test_map" << "{" << "x" << 1 << "y" << 2 << "width" << 100 << "height" << 200 << "lbp" << "[:";
|
|
|
|
|
|
|
|
const uchar arr[] = {0, 1, 1, 0, 1, 1, 0, 1};
|
|
|
|
fs.writeRaw("u", arr, (int)(sizeof(arr)/sizeof(arr[0])));
|
|
|
|
|
|
|
|
fs << "]" << "}";
|
|
|
|
cvWriteComment(*fs, "test comment", 0);
|
|
|
|
|
|
|
|
fs.writeObj("test_seq", seq);
|
|
|
|
fs.writeObj("test_graph",graph);
|
|
|
|
CvGraph* graph2 = (CvGraph*)cvClone(graph);
|
|
|
|
|
|
|
|
string content = fs.releaseAndGetString();
|
|
|
|
|
|
|
|
if(!fs.open(mem ? content : filename, FileStorage::READ + (mem ? FileStorage::MEMORY : 0)))
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "filename %s can not be read\n", !mem ? filename.c_str() : content.c_str());
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
int real_int = (int)fs["test_int"];
|
|
|
|
double real_real = (double)fs["test_real"];
|
|
|
|
String real_string = (String)fs["test_string"];
|
|
|
|
|
|
|
|
if( real_int != test_int ||
|
|
|
|
fabs(real_real - test_real) > DBL_EPSILON*(fabs(test_real)+1) ||
|
|
|
|
real_string != test_string )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "the read scalars are not correct\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
CvMat* m = (CvMat*)fs["test_mat"].readObj();
|
|
|
|
CvMat _test_mat = test_mat;
|
|
|
|
double max_diff = 0;
|
|
|
|
CvMat stub1, _test_stub1;
|
|
|
|
cvReshape(m, &stub1, 1, 0);
|
|
|
|
cvReshape(&_test_mat, &_test_stub1, 1, 0);
|
|
|
|
vector<int> pt;
|
|
|
|
|
|
|
|
if( !m || !CV_IS_MAT(m) || m->rows != test_mat.rows || m->cols != test_mat.cols ||
|
|
|
|
cvtest::cmpEps( cv::cvarrToMat(&stub1), cv::cvarrToMat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "the read matrix is not correct: (%.20g vs %.20g) at (%d,%d)\n",
|
|
|
|
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[0], pt[1]),
|
|
|
|
pt[0], pt[1] );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if( m && CV_IS_MAT(m))
|
|
|
|
cvReleaseMat(&m);
|
|
|
|
|
|
|
|
CvMatND* m_nd = (CvMatND*)fs["test_mat_nd"].readObj();
|
|
|
|
CvMatND _test_mat_nd = test_mat_nd;
|
|
|
|
|
|
|
|
if( !m_nd || !CV_IS_MATND(m_nd) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "the read nd-matrix is not correct\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
CvMat stub, _test_stub;
|
|
|
|
cvGetMat(m_nd, &stub, 0, 1);
|
|
|
|
cvGetMat(&_test_mat_nd, &_test_stub, 0, 1);
|
|
|
|
cvReshape(&stub, &stub1, 1, 0);
|
|
|
|
cvReshape(&_test_stub, &_test_stub1, 1, 0);
|
|
|
|
|
|
|
|
if( !CV_ARE_TYPES_EQ(&stub, &_test_stub) ||
|
|
|
|
!CV_ARE_SIZES_EQ(&stub, &_test_stub) ||
|
|
|
|
//cvNorm(&stub, &_test_stub, CV_L2) != 0 )
|
|
|
|
cvtest::cmpEps( cv::cvarrToMat(&stub1), cv::cvarrToMat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "readObj method: the read nd matrix is not correct: (%.20g vs %.20g) vs at (%d,%d)\n",
|
|
|
|
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[0], pt[1]),
|
|
|
|
pt[0], pt[1] );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
MatND mat_nd2;
|
|
|
|
fs["test_mat_nd"] >> mat_nd2;
|
|
|
|
CvMatND m_nd2 = mat_nd2;
|
|
|
|
cvGetMat(&m_nd2, &stub, 0, 1);
|
|
|
|
cvReshape(&stub, &stub1, 1, 0);
|
|
|
|
|
|
|
|
if( !CV_ARE_TYPES_EQ(&stub, &_test_stub) ||
|
|
|
|
!CV_ARE_SIZES_EQ(&stub, &_test_stub) ||
|
|
|
|
//cvNorm(&stub, &_test_stub, CV_L2) != 0 )
|
|
|
|
cvtest::cmpEps( cv::cvarrToMat(&stub1), cv::cvarrToMat(&_test_stub1), &max_diff, 0, &pt, true) < 0 )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "C++ method: the read nd matrix is not correct: (%.20g vs %.20g) vs at (%d,%d)\n",
|
|
|
|
cvGetReal2D(&stub1, pt[0], pt[1]), cvGetReal2D(&_test_stub1, pt[1], pt[0]),
|
|
|
|
pt[0], pt[1] );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
cvRelease((void**)&m_nd);
|
|
|
|
|
|
|
|
Ptr<CvSparseMat> m_s((CvSparseMat*)fs["test_sparse_mat"].readObj());
|
|
|
|
Ptr<CvSparseMat> _test_sparse_(cvCreateSparseMat(test_sparse_mat));
|
|
|
|
Ptr<CvSparseMat> _test_sparse((CvSparseMat*)cvClone(_test_sparse_));
|
|
|
|
SparseMat m_s2;
|
|
|
|
fs["test_sparse_mat"] >> m_s2;
|
|
|
|
Ptr<CvSparseMat> _m_s2(cvCreateSparseMat(m_s2));
|
|
|
|
|
|
|
|
if( !m_s || !CV_IS_SPARSE_MAT(m_s) ||
|
|
|
|
!cvTsCheckSparse(m_s, _test_sparse, 0) ||
|
|
|
|
!cvTsCheckSparse(_m_s2, _test_sparse, 0))
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "the read sparse matrix is not correct\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
FileNode tl = fs["test_list"];
|
|
|
|
if( tl.type() != FileNode::SEQ || tl.size() != 6 ||
|
|
|
|
fabs((double)tl[0] - 0.0000000000001) >= DBL_EPSILON ||
|
|
|
|
(int)tl[1] != 2 ||
|
|
|
|
fabs((double)tl[2] - CV_PI) >= DBL_EPSILON ||
|
|
|
|
(int)tl[3] != -3435345 ||
|
|
|
|
(String)tl[4] != "2-502 2-029 3egegeg" ||
|
|
|
|
tl[5].type() != FileNode::MAP || tl[5].size() != 3 ||
|
|
|
|
(int)tl[5]["month"] != 12 ||
|
|
|
|
(int)tl[5]["day"] != 31 ||
|
|
|
|
(int)tl[5]["year"] != 1969 )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "the test list is incorrect\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
FileNode tm = fs["test_map"];
|
|
|
|
FileNode tm_lbp = tm["lbp"];
|
|
|
|
|
|
|
|
int real_x = (int)tm["x"];
|
|
|
|
int real_y = (int)tm["y"];
|
|
|
|
int real_width = (int)tm["width"];
|
|
|
|
int real_height = (int)tm["height"];
|
|
|
|
|
|
|
|
int real_lbp_val = 0;
|
|
|
|
FileNodeIterator it;
|
|
|
|
it = tm_lbp.begin();
|
|
|
|
real_lbp_val |= (int)*it << 0;
|
|
|
|
++it;
|
|
|
|
real_lbp_val |= (int)*it << 1;
|
|
|
|
it++;
|
|
|
|
real_lbp_val |= (int)*it << 2;
|
|
|
|
it += 1;
|
|
|
|
real_lbp_val |= (int)*it << 3;
|
|
|
|
FileNodeIterator it2(it);
|
|
|
|
it2 += 4;
|
|
|
|
real_lbp_val |= (int)*it2 << 7;
|
|
|
|
--it2;
|
|
|
|
real_lbp_val |= (int)*it2 << 6;
|
|
|
|
it2--;
|
|
|
|
real_lbp_val |= (int)*it2 << 5;
|
|
|
|
it2 -= 1;
|
|
|
|
real_lbp_val |= (int)*it2 << 4;
|
|
|
|
it2 += -1;
|
|
|
|
CV_Assert( it == it2 );
|
|
|
|
|
|
|
|
if( tm.type() != FileNode::MAP || tm.size() != 5 ||
|
|
|
|
real_x != 1 ||
|
|
|
|
real_y != 2 ||
|
|
|
|
real_width != 100 ||
|
|
|
|
real_height != 200 ||
|
|
|
|
tm_lbp.type() != FileNode::SEQ ||
|
|
|
|
tm_lbp.size() != 8 ||
|
|
|
|
real_lbp_val != 0xb6 )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "the test map is incorrect\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
CvGraph* graph3 = (CvGraph*)fs["test_graph"].readObj();
|
|
|
|
if(graph2->active_count != vcount || graph3->active_count != vcount ||
|
|
|
|
graph2->edges->active_count != ecount || graph3->edges->active_count != ecount)
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "the cloned or read graph have wrong number of vertices or edges\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( i = 0; i < ecount; i++ )
|
|
|
|
{
|
|
|
|
CvGraphEdge* edge2 = cvFindGraphEdge(graph2, edges[i][0], edges[i][1]);
|
|
|
|
CvGraphEdge* edge3 = cvFindGraphEdge(graph3, edges[i][0], edges[i][1]);
|
|
|
|
if( !edge2 || edge2->weight != (float)(i+1) ||
|
|
|
|
!edge3 || edge3->weight != (float)(i+1) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "the cloned or read graph do not have the edge (%d, %d)\n", edges[i][0], edges[i][1] );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fs.release();
|
|
|
|
if( !mem )
|
|
|
|
remove(filename.c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(Core_InputOutput, write_read_consistency) { Core_IOTest test; test.safe_run(); }
|
|
|
|
|
|
|
|
extern void testFormatter();
|
|
|
|
|
|
|
|
|
|
|
|
struct UserDefinedType
|
|
|
|
{
|
|
|
|
int a;
|
|
|
|
float b;
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline bool operator==(const UserDefinedType &x,
|
|
|
|
const UserDefinedType &y) {
|
|
|
|
return (x.a == y.a) && (x.b == y.b);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void write(FileStorage &fs,
|
|
|
|
const String&,
|
|
|
|
const UserDefinedType &value)
|
|
|
|
{
|
|
|
|
fs << "{:" << "a" << value.a << "b" << value.b << "}";
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void read(const FileNode& node,
|
|
|
|
UserDefinedType& value,
|
|
|
|
const UserDefinedType& default_value
|
|
|
|
= UserDefinedType()) {
|
|
|
|
if(node.empty())
|
|
|
|
{
|
|
|
|
value = default_value;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
node["a"] >> value.a;
|
|
|
|
node["b"] >> value.b;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class CV_MiscIOTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_MiscIOTest() {}
|
|
|
|
~CV_MiscIOTest() {}
|
|
|
|
protected:
|
|
|
|
void run(int)
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
string fname = cv::tempfile(".xml");
|
|
|
|
vector<int> mi, mi2, mi3, mi4;
|
|
|
|
vector<Mat> mv, mv2, mv3, mv4;
|
|
|
|
vector<UserDefinedType> vudt, vudt2, vudt3, vudt4;
|
|
|
|
Mat m(10, 9, CV_32F);
|
|
|
|
Mat empty;
|
|
|
|
UserDefinedType udt = { 8, 3.3f };
|
|
|
|
randu(m, 0, 1);
|
|
|
|
mi3.push_back(5);
|
|
|
|
mv3.push_back(m);
|
|
|
|
vudt3.push_back(udt);
|
|
|
|
Point_<float> p1(1.1f, 2.2f), op1;
|
|
|
|
Point3i p2(3, 4, 5), op2;
|
|
|
|
Size s1(6, 7), os1;
|
|
|
|
Complex<int> c1(9, 10), oc1;
|
|
|
|
Rect r1(11, 12, 13, 14), or1;
|
|
|
|
Vec<int, 5> v1(15, 16, 17, 18, 19), ov1;
|
|
|
|
Scalar sc1(20.0, 21.1, 22.2, 23.3), osc1;
|
|
|
|
Range g1(7, 8), og1;
|
|
|
|
|
|
|
|
FileStorage fs(fname, FileStorage::WRITE);
|
|
|
|
fs << "mi" << mi;
|
|
|
|
fs << "mv" << mv;
|
|
|
|
fs << "mi3" << mi3;
|
|
|
|
fs << "mv3" << mv3;
|
|
|
|
fs << "vudt" << vudt;
|
|
|
|
fs << "vudt3" << vudt3;
|
|
|
|
fs << "empty" << empty;
|
|
|
|
fs << "p1" << p1;
|
|
|
|
fs << "p2" << p2;
|
|
|
|
fs << "s1" << s1;
|
|
|
|
fs << "c1" << c1;
|
|
|
|
fs << "r1" << r1;
|
|
|
|
fs << "v1" << v1;
|
|
|
|
fs << "sc1" << sc1;
|
|
|
|
fs << "g1" << g1;
|
|
|
|
fs.release();
|
|
|
|
|
|
|
|
fs.open(fname, FileStorage::READ);
|
|
|
|
fs["mi"] >> mi2;
|
|
|
|
fs["mv"] >> mv2;
|
|
|
|
fs["mi3"] >> mi4;
|
|
|
|
fs["mv3"] >> mv4;
|
|
|
|
fs["vudt"] >> vudt2;
|
|
|
|
fs["vudt3"] >> vudt4;
|
|
|
|
fs["empty"] >> empty;
|
|
|
|
fs["p1"] >> op1;
|
|
|
|
fs["p2"] >> op2;
|
|
|
|
fs["s1"] >> os1;
|
|
|
|
fs["c1"] >> oc1;
|
|
|
|
fs["r1"] >> or1;
|
|
|
|
fs["v1"] >> ov1;
|
|
|
|
fs["sc1"] >> osc1;
|
|
|
|
fs["g1"] >> og1;
|
|
|
|
CV_Assert( mi2.empty() );
|
|
|
|
CV_Assert( mv2.empty() );
|
|
|
|
CV_Assert( cvtest::norm(Mat(mi3), Mat(mi4), CV_C) == 0 );
|
|
|
|
CV_Assert( mv4.size() == 1 );
|
|
|
|
double n = cvtest::norm(mv3[0], mv4[0], CV_C);
|
|
|
|
CV_Assert( vudt2.empty() );
|
|
|
|
CV_Assert( vudt3 == vudt4 );
|
|
|
|
CV_Assert( n == 0 );
|
|
|
|
CV_Assert( op1 == p1 );
|
|
|
|
CV_Assert( op2 == p2 );
|
|
|
|
CV_Assert( os1 == s1 );
|
|
|
|
CV_Assert( oc1 == c1 );
|
|
|
|
CV_Assert( or1 == r1 );
|
|
|
|
CV_Assert( ov1 == v1 );
|
|
|
|
CV_Assert( osc1 == sc1 );
|
|
|
|
CV_Assert( og1 == g1 );
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(Core_InputOutput, misc) { CV_MiscIOTest test; test.safe_run(); }
|
|
|
|
|
|
|
|
/*class CV_BigMatrixIOTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_BigMatrixIOTest() {}
|
|
|
|
~CV_BigMatrixIOTest() {}
|
|
|
|
protected:
|
|
|
|
void run(int)
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
RNG& rng = theRNG();
|
|
|
|
int N = 1000, M = 1200000;
|
|
|
|
Mat mat(M, N, CV_32F);
|
|
|
|
rng.fill(mat, RNG::UNIFORM, 0, 1);
|
|
|
|
FileStorage fs(cv::tempfile(".xml"), FileStorage::WRITE);
|
|
|
|
fs << "mat" << mat;
|
|
|
|
fs.release();
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(Core_InputOutput, huge) { CV_BigMatrixIOTest test; test.safe_run(); }
|
|
|
|
*/
|
|
|
|
|
|
|
|
TEST(Core_globbing, accuracy)
|
|
|
|
{
|
|
|
|
std::string patternLena = cvtest::TS::ptr()->get_data_path() + "lena*.*";
|
|
|
|
std::string patternLenaPng = cvtest::TS::ptr()->get_data_path() + "lena.png";
|
|
|
|
|
|
|
|
std::vector<String> lenas, pngLenas;
|
|
|
|
cv::glob(patternLena, lenas, true);
|
|
|
|
cv::glob(patternLenaPng, pngLenas, true);
|
|
|
|
|
|
|
|
ASSERT_GT(lenas.size(), pngLenas.size());
|
|
|
|
|
|
|
|
for (size_t i = 0; i < pngLenas.size(); ++i)
|
|
|
|
{
|
|
|
|
ASSERT_NE(std::find(lenas.begin(), lenas.end(), pngLenas[i]), lenas.end());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Core_InputOutput, FileStorage)
|
|
|
|
{
|
|
|
|
std::string file = cv::tempfile(".xml");
|
|
|
|
cv::FileStorage f(file, cv::FileStorage::WRITE);
|
|
|
|
|
|
|
|
char arr[66];
|
|
|
|
sprintf(arr, "sprintf is hell %d", 666);
|
|
|
|
EXPECT_NO_THROW(f << arr);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Core_InputOutput, FileStorageKey)
|
|
|
|
{
|
|
|
|
cv::FileStorage f("dummy.yml", cv::FileStorage::WRITE | cv::FileStorage::MEMORY);
|
|
|
|
|
|
|
|
EXPECT_NO_THROW(f << "key1" << "value1");
|
|
|
|
EXPECT_NO_THROW(f << "_key2" << "value2");
|
|
|
|
EXPECT_NO_THROW(f << "key_3" << "value3");
|
|
|
|
const std::string expected = "%YAML 1.0\n---\nkey1: value1\n_key2: value2\nkey_3: value3\n";
|
|
|
|
ASSERT_STREQ(f.releaseAndGetString().c_str(), expected.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Core_InputOutput, filestorage_yml_compatibility)
|
|
|
|
{
|
|
|
|
//EXPECT_ANY_THROW();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Core_InputOutput, filestorage_yml_base64)
|
|
|
|
{
|
|
|
|
cv::Mat _em_out, _em_in;
|
|
|
|
cv::Mat _2d_out, _2d_in;
|
|
|
|
cv::Mat _nd_out, _nd_in;
|
|
|
|
|
|
|
|
{ /* init */
|
|
|
|
|
|
|
|
/* normal mat */
|
|
|
|
_2d_out = cv::Mat(1000, 1000, CV_8UC3, cvScalar(1U, 2U, 3U));
|
|
|
|
for (int i = 0; i < _2d_out.rows; ++i)
|
|
|
|
for (int j = 0; j < _2d_out.cols; ++j)
|
|
|
|
_2d_out.at<cv::Vec3b>(i, j)[1] = i % 256;
|
|
|
|
|
|
|
|
/* 4d mat */
|
|
|
|
const int Size[] = {4, 4, 4, 4};
|
|
|
|
cv::Mat _4d(4, Size, CV_32FC4);
|
|
|
|
const cv::Range ranges[] = {
|
|
|
|
cv::Range(0, 2),
|
|
|
|
cv::Range(0, 2),
|
|
|
|
cv::Range(1, 2),
|
|
|
|
cv::Range(0, 2) };
|
|
|
|
_nd_out = _4d(ranges);
|
|
|
|
}
|
|
|
|
|
|
|
|
{ /* write */
|
|
|
|
cv::FileStorage fs("test.yml", cv::FileStorage::WRITE);
|
|
|
|
cv::cvWriteMat_Base64(fs, "normal_2d_mat", _2d_out);
|
|
|
|
cv::cvWriteMat_Base64(fs, "normal_nd_mat", _nd_out);
|
|
|
|
cv::cvWriteMat_Base64(fs, "empty_2d_mat", _em_out);
|
|
|
|
fs.release();
|
|
|
|
}
|
|
|
|
|
|
|
|
{ /* read */
|
|
|
|
cv::FileStorage fs("test.yml", cv::FileStorage::READ);
|
|
|
|
fs["empty_2d_mat"] >> _em_in;
|
|
|
|
fs["normal_2d_mat"] >> _2d_in;
|
|
|
|
fs["normal_nd_mat"] >> _nd_in;
|
|
|
|
fs.release();
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPECT_EQ(_em_in.rows , _em_out.rows);
|
|
|
|
EXPECT_EQ(_em_in.cols , _em_out.cols);
|
|
|
|
EXPECT_EQ(_em_in.dims , _em_out.dims);
|
|
|
|
EXPECT_EQ(_em_in.depth(), _em_out.depth());
|
|
|
|
EXPECT_TRUE(_em_in.empty());
|
|
|
|
|
|
|
|
EXPECT_EQ(_2d_in.rows , _2d_in.rows);
|
|
|
|
EXPECT_EQ(_2d_in.cols , _2d_in.cols);
|
|
|
|
EXPECT_EQ(_2d_in.dims , _2d_in.dims);
|
|
|
|
EXPECT_EQ(_2d_in.depth(), _2d_in.depth());
|
|
|
|
for(int i = 0; i < _2d_in.rows; ++i)
|
|
|
|
for (int j = 0; j < _2d_in.cols; ++j)
|
|
|
|
EXPECT_EQ(_2d_in.at<cv::Vec3b>(i, j), _2d_out.at<cv::Vec3b>(i, j));
|
|
|
|
|
|
|
|
EXPECT_EQ(_nd_in.rows , _nd_in.rows);
|
|
|
|
EXPECT_EQ(_nd_in.cols , _nd_in.cols);
|
|
|
|
EXPECT_EQ(_nd_in.dims , _nd_in.dims);
|
|
|
|
EXPECT_EQ(_nd_in.depth(), _nd_in.depth());
|
|
|
|
EXPECT_EQ(cv::countNonZero(cv::mean(_nd_in != _nd_out)), 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Core_InputOutput, filestorage_xml_base64)
|
|
|
|
{
|
|
|
|
cv::Mat _em_out, _em_in;
|
|
|
|
cv::Mat _2d_out, _2d_in;
|
|
|
|
cv::Mat _nd_out, _nd_in;
|
|
|
|
|
|
|
|
{ /* init */
|
|
|
|
|
|
|
|
/* normal mat */
|
|
|
|
_2d_out = cv::Mat(1000, 1000, CV_8UC3, cvScalar(1U, 2U, 3U));
|
|
|
|
for (int i = 0; i < _2d_out.rows; ++i)
|
|
|
|
for (int j = 0; j < _2d_out.cols; ++j)
|
|
|
|
_2d_out.at<cv::Vec3b>(i, j)[1] = i % 256;
|
|
|
|
|
|
|
|
/* 4d mat */
|
|
|
|
const int Size[] = {4, 4, 4, 4};
|
|
|
|
cv::Mat _4d(4, Size, CV_32FC4);
|
|
|
|
const cv::Range ranges[] = {
|
|
|
|
cv::Range(0, 2),
|
|
|
|
cv::Range(0, 2),
|
|
|
|
cv::Range(1, 2),
|
|
|
|
cv::Range(0, 2) };
|
|
|
|
_nd_out = _4d(ranges);
|
|
|
|
}
|
|
|
|
|
|
|
|
{ /* write */
|
|
|
|
cv::FileStorage fs("test.xml", cv::FileStorage::WRITE);
|
|
|
|
cv::cvWriteMat_Base64(fs, "normal_2d_mat", _2d_out);
|
|
|
|
cv::cvWriteMat_Base64(fs, "normal_nd_mat", _nd_out);
|
|
|
|
cv::cvWriteMat_Base64(fs, "empty_2d_mat", _em_out);
|
|
|
|
fs.release();
|
|
|
|
}
|
|
|
|
|
|
|
|
{ /* read */
|
|
|
|
cv::FileStorage fs("test.xml", cv::FileStorage::READ);
|
|
|
|
fs["empty_2d_mat"] >> _em_in;
|
|
|
|
fs["normal_2d_mat"] >> _2d_in;
|
|
|
|
fs["normal_nd_mat"] >> _nd_in;
|
|
|
|
fs.release();
|
|
|
|
}
|
|
|
|
|
|
|
|
EXPECT_EQ(_em_in.rows , _em_out.rows);
|
|
|
|
EXPECT_EQ(_em_in.cols , _em_out.cols);
|
|
|
|
EXPECT_EQ(_em_in.dims , _em_out.dims);
|
|
|
|
EXPECT_EQ(_em_in.depth(), _em_out.depth());
|
|
|
|
EXPECT_TRUE(_em_in.empty());
|
|
|
|
|
|
|
|
EXPECT_EQ(_2d_in.rows , _2d_in.rows);
|
|
|
|
EXPECT_EQ(_2d_in.cols , _2d_in.cols);
|
|
|
|
EXPECT_EQ(_2d_in.dims , _2d_in.dims);
|
|
|
|
EXPECT_EQ(_2d_in.depth(), _2d_in.depth());
|
|
|
|
for(int i = 0; i < _2d_in.rows; ++i)
|
|
|
|
for (int j = 0; j < _2d_in.cols; ++j)
|
|
|
|
EXPECT_EQ(_2d_in.at<cv::Vec3b>(i, j), _2d_out.at<cv::Vec3b>(i, j));
|
|
|
|
|
|
|
|
EXPECT_EQ(_nd_in.rows , _nd_in.rows);
|
|
|
|
EXPECT_EQ(_nd_in.cols , _nd_in.cols);
|
|
|
|
EXPECT_EQ(_nd_in.dims , _nd_in.dims);
|
|
|
|
EXPECT_EQ(_nd_in.depth(), _nd_in.depth());
|
|
|
|
EXPECT_EQ(cv::countNonZero(cv::mean(_nd_in != _nd_out)), 0);
|
|
|
|
}
|