|
|
|
#!/usr/bin/env python
|
|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import unittest
|
|
|
|
import sys
|
|
|
|
import hashlib
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
# Python 3 moved urlopen to urllib.requests
|
|
|
|
try:
|
|
|
|
from urllib.request import urlopen
|
|
|
|
except ImportError:
|
|
|
|
from urllib import urlopen
|
|
|
|
|
|
|
|
class NewOpenCVTests(unittest.TestCase):
|
|
|
|
|
|
|
|
# path to local repository folder containing 'samples' folder
|
|
|
|
repoPath = None
|
|
|
|
# github repository url
|
|
|
|
repoUrl = 'https://raw.github.com/Itseez/opencv/master'
|
|
|
|
|
|
|
|
def get_sample(self, filename, iscolor = cv2.IMREAD_COLOR):
|
|
|
|
if not filename in self.image_cache:
|
|
|
|
filedata = None
|
|
|
|
if NewOpenCVTests.repoPath is not None:
|
|
|
|
candidate = NewOpenCVTests.repoPath + '/' + filename
|
|
|
|
if os.path.isfile(candidate):
|
|
|
|
with open(candidate, 'rb') as f:
|
|
|
|
filedata = f.read()
|
|
|
|
if filedata is None:
|
|
|
|
filedata = urlopen(NewOpenCVTests.repoUrl + '/' + filename).read()
|
|
|
|
self.image_cache[filename] = cv2.imdecode(np.fromstring(filedata, dtype=np.uint8), iscolor)
|
|
|
|
return self.image_cache[filename]
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
self.image_cache = {}
|
|
|
|
|
|
|
|
def hashimg(self, im):
|
|
|
|
""" Compute a hash for an image, useful for image comparisons """
|
|
|
|
return hashlib.md5(im.tostring()).hexdigest()
|
|
|
|
|
|
|
|
if sys.version_info[:2] == (2, 6):
|
|
|
|
def assertLess(self, a, b, msg=None):
|
|
|
|
if not a < b:
|
|
|
|
self.fail('%s not less than %s' % (repr(a), repr(b)))
|
|
|
|
|
|
|
|
def assertLessEqual(self, a, b, msg=None):
|
|
|
|
if not a <= b:
|
|
|
|
self.fail('%s not less than or equal to %s' % (repr(a), repr(b)))
|
|
|
|
|
|
|
|
def assertGreater(self, a, b, msg=None):
|
|
|
|
if not a > b:
|
|
|
|
self.fail('%s not greater than %s' % (repr(a), repr(b)))
|
|
|
|
|
|
|
|
def intersectionRate(s1, s2):
|
|
|
|
|
|
|
|
x1, y1, x2, y2 = s1
|
|
|
|
s1 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ]
|
|
|
|
|
|
|
|
x1, y1, x2, y2 = s2
|
|
|
|
s2 = [[x1, y1], [x2,y1], [x2, y2], [x1, y2] ]
|
|
|
|
#print(np.array(s2))
|
|
|
|
area, intersection = cv2.intersectConvexConvex(np.array(s1), np.array(s2))
|
|
|
|
return 2 * area / (cv2.contourArea(np.array(s1)) + cv2.contourArea(np.array(s2)))
|