|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
class CV_BaseHistTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { MAX_HIST = 12 };
|
|
|
|
|
|
|
|
CV_BaseHistTest();
|
|
|
|
~CV_BaseHistTest();
|
|
|
|
void clear();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
int read_params( CvFileStorage* fs );
|
|
|
|
void run_func(void);
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
int validate_test_results( int test_case_idx );
|
|
|
|
virtual void init_hist( int test_case_idx, int i );
|
|
|
|
|
|
|
|
virtual void get_hist_params( int test_case_idx );
|
|
|
|
virtual float** get_hist_ranges( int test_case_idx );
|
|
|
|
|
|
|
|
int max_log_size;
|
|
|
|
int max_cdims;
|
|
|
|
int cdims;
|
|
|
|
int dims[CV_MAX_DIM];
|
|
|
|
int total_size;
|
|
|
|
int hist_type;
|
|
|
|
int hist_count;
|
|
|
|
int uniform;
|
|
|
|
int gen_random_hist;
|
|
|
|
double gen_hist_max_val, gen_hist_sparse_nz_ratio;
|
|
|
|
|
|
|
|
int init_ranges;
|
|
|
|
int img_type;
|
|
|
|
int img_max_log_size;
|
|
|
|
double low, high, range_delta;
|
|
|
|
Size img_size;
|
|
|
|
|
|
|
|
vector<CvHistogram*> hist;
|
|
|
|
vector<float> _ranges;
|
|
|
|
vector<float*> ranges;
|
|
|
|
bool test_cpp;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
CV_BaseHistTest::CV_BaseHistTest()
|
|
|
|
{
|
|
|
|
test_case_count = 100;
|
|
|
|
max_log_size = 20;
|
|
|
|
img_max_log_size = 8;
|
|
|
|
max_cdims = 6;
|
|
|
|
hist_count = 1;
|
|
|
|
init_ranges = 0;
|
|
|
|
gen_random_hist = 0;
|
|
|
|
gen_hist_max_val = 100;
|
|
|
|
|
|
|
|
test_cpp = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CV_BaseHistTest::~CV_BaseHistTest()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_BaseHistTest::clear()
|
|
|
|
{
|
|
|
|
cvtest::BaseTest::clear();
|
|
|
|
for( size_t i = 0; i < hist.size(); i++ )
|
|
|
|
cvReleaseHist( &hist[i] );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_BaseHistTest::read_params( CvFileStorage* fs )
|
|
|
|
{
|
|
|
|
int code = cvtest::BaseTest::read_params( fs );
|
|
|
|
if( code < 0 )
|
|
|
|
return code;
|
|
|
|
|
|
|
|
test_case_count = cvReadInt( find_param( fs, "struct_count" ), test_case_count );
|
|
|
|
max_log_size = cvReadInt( find_param( fs, "max_log_size" ), max_log_size );
|
|
|
|
max_log_size = cvtest::clipInt( max_log_size, 1, 20 );
|
|
|
|
img_max_log_size = cvReadInt( find_param( fs, "max_log_array_size" ), img_max_log_size );
|
|
|
|
img_max_log_size = cvtest::clipInt( img_max_log_size, 1, 9 );
|
|
|
|
|
|
|
|
max_cdims = cvReadInt( find_param( fs, "max_cdims" ), max_cdims );
|
|
|
|
max_cdims = cvtest::clipInt( max_cdims, 1, 6 );
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_BaseHistTest::get_hist_params( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
int i, max_dim_size, max_ni_dim_size = 31;
|
|
|
|
double hist_size;
|
|
|
|
|
|
|
|
cdims = cvtest::randInt(rng) % max_cdims + 1;
|
|
|
|
hist_size = exp(cvtest::randReal(rng)*max_log_size*CV_LOG2);
|
|
|
|
max_dim_size = cvRound(pow(hist_size,1./cdims));
|
|
|
|
total_size = 1;
|
|
|
|
uniform = cvtest::randInt(rng) % 2;
|
|
|
|
hist_type = cvtest::randInt(rng) % 2 ? CV_HIST_SPARSE : CV_HIST_ARRAY;
|
|
|
|
|
|
|
|
for( i = 0; i < cdims; i++ )
|
|
|
|
{
|
|
|
|
dims[i] = cvtest::randInt(rng) % (max_dim_size + 2) + 2;
|
|
|
|
if( !uniform )
|
|
|
|
dims[i] = MIN(dims[i], max_ni_dim_size);
|
|
|
|
total_size *= dims[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
img_type = cvtest::randInt(rng) % 2 ? CV_32F : CV_8U;
|
|
|
|
img_size.width = cvRound( exp(cvtest::randReal(rng) * img_max_log_size * CV_LOG2) );
|
|
|
|
img_size.height = cvRound( exp(cvtest::randReal(rng) * img_max_log_size * CV_LOG2) );
|
|
|
|
|
|
|
|
if( img_type < CV_32F )
|
|
|
|
{
|
|
|
|
low = cvtest::getMinVal(img_type);
|
|
|
|
high = cvtest::getMaxVal(img_type);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
high = 1000;
|
|
|
|
low = -high;
|
|
|
|
}
|
|
|
|
|
|
|
|
range_delta = (cvtest::randInt(rng) % 2)*(high-low)*0.05;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
float** CV_BaseHistTest::get_hist_ranges( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
double _low = low + range_delta, _high = high - range_delta;
|
|
|
|
|
|
|
|
if( !init_ranges )
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
ranges.resize(cdims);
|
|
|
|
|
|
|
|
if( uniform )
|
|
|
|
{
|
|
|
|
_ranges.resize(cdims*2);
|
|
|
|
for( int i = 0; i < cdims; i++ )
|
|
|
|
{
|
|
|
|
_ranges[i*2] = (float)_low;
|
|
|
|
_ranges[i*2+1] = (float)_high;
|
|
|
|
ranges[i] = &_ranges[i*2];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int i, dims_sum = 0, ofs = 0;
|
|
|
|
for( i = 0; i < cdims; i++ )
|
|
|
|
dims_sum += dims[i] + 1;
|
|
|
|
_ranges.resize(dims_sum);
|
|
|
|
|
|
|
|
for( i = 0; i < cdims; i++ )
|
|
|
|
{
|
|
|
|
int j, n = dims[i];
|
|
|
|
// generate logarithmic scale
|
|
|
|
double delta, q, val;
|
|
|
|
for( j = 0; j < 10; j++ )
|
|
|
|
{
|
|
|
|
q = 1. + (j+1)*0.1;
|
|
|
|
if( (pow(q,(double)n)-1)/(q-1.) >= _high-_low )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( j == 0 )
|
|
|
|
{
|
|
|
|
delta = (_high-_low)/n;
|
|
|
|
q = 1.;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
q = 1 + j*0.1;
|
|
|
|
delta = cvFloor((_high-_low)*(q-1)/(pow(q,(double)n) - 1));
|
|
|
|
delta = MAX(delta, 1.);
|
|
|
|
}
|
|
|
|
val = _low;
|
|
|
|
|
|
|
|
for( j = 0; j <= n; j++ )
|
|
|
|
{
|
|
|
|
_ranges[j+ofs] = (float)MIN(val,_high);
|
|
|
|
val += delta;
|
|
|
|
delta *= q;
|
|
|
|
}
|
|
|
|
ranges[i] = &_ranges[ofs];
|
|
|
|
ofs += n + 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return &ranges[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_BaseHistTest::init_hist( int /*test_case_idx*/, int hist_i )
|
|
|
|
{
|
|
|
|
if( gen_random_hist )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
|
|
|
|
if( hist_type == CV_HIST_ARRAY )
|
|
|
|
{
|
|
|
|
Mat h = cvarrToMat(hist[hist_i]->bins);
|
|
|
|
cvtest::randUni(rng, h, Scalar::all(0), Scalar::all(gen_hist_max_val) );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CvArr* arr = hist[hist_i]->bins;
|
|
|
|
int i, j, totalSize = 1, nz_count;
|
|
|
|
int idx[CV_MAX_DIM];
|
|
|
|
for( i = 0; i < cdims; i++ )
|
|
|
|
totalSize *= dims[i];
|
|
|
|
|
|
|
|
nz_count = cvtest::randInt(rng) % MAX( totalSize/4, 100 );
|
|
|
|
nz_count = MIN( nz_count, totalSize );
|
|
|
|
|
|
|
|
// a zero number of non-zero elements should be allowed
|
|
|
|
for( i = 0; i < nz_count; i++ )
|
|
|
|
{
|
|
|
|
for( j = 0; j < cdims; j++ )
|
|
|
|
idx[j] = cvtest::randInt(rng) % dims[j];
|
|
|
|
cvSetRealND(arr, idx, cvtest::randReal(rng)*gen_hist_max_val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_BaseHistTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
float** r;
|
|
|
|
|
|
|
|
clear();
|
|
|
|
|
|
|
|
cvtest::BaseTest::prepare_test_case( test_case_idx );
|
|
|
|
get_hist_params( test_case_idx );
|
|
|
|
r = get_hist_ranges( test_case_idx );
|
|
|
|
hist.resize(hist_count);
|
|
|
|
|
|
|
|
for( i = 0; i < hist_count; i++ )
|
|
|
|
{
|
|
|
|
hist[i] = cvCreateHist( cdims, dims, hist_type, r, uniform );
|
|
|
|
init_hist( test_case_idx, i );
|
|
|
|
}
|
|
|
|
test_cpp = (cvtest::randInt(ts->get_rng()) % 2) != 0;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_BaseHistTest::run_func(void)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_BaseHistTest::validate_test_results( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////// testing operation for reading/writing individual histogram bins //////////////
|
|
|
|
|
|
|
|
class CV_QueryHistTest : public CV_BaseHistTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_QueryHistTest();
|
|
|
|
~CV_QueryHistTest();
|
|
|
|
void clear();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void run_func(void);
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
int validate_test_results( int test_case_idx );
|
|
|
|
void init_hist( int test_case_idx, int i );
|
|
|
|
|
|
|
|
Mat indices;
|
|
|
|
Mat values;
|
|
|
|
Mat values0;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
CV_QueryHistTest::CV_QueryHistTest()
|
|
|
|
{
|
|
|
|
hist_count = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CV_QueryHistTest::~CV_QueryHistTest()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_QueryHistTest::clear()
|
|
|
|
{
|
|
|
|
CV_BaseHistTest::clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_QueryHistTest::init_hist( int /*test_case_idx*/, int i )
|
|
|
|
{
|
|
|
|
if( hist_type == CV_HIST_ARRAY )
|
|
|
|
cvZero( hist[i]->bins );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_QueryHistTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
int code = CV_BaseHistTest::prepare_test_case( test_case_idx );
|
|
|
|
|
|
|
|
if( code > 0 )
|
|
|
|
{
|
|
|
|
int i, j, iters;
|
|
|
|
float default_value = 0.f;
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
int* idx;
|
|
|
|
|
|
|
|
iters = (cvtest::randInt(rng) % MAX(total_size/10,100)) + 1;
|
|
|
|
iters = MIN( iters, total_size*9/10 + 1 );
|
|
|
|
|
|
|
|
indices = Mat(1, iters*cdims, CV_32S);
|
|
|
|
values = Mat(1, iters, CV_32F );
|
|
|
|
values0 = Mat( 1, iters, CV_32F );
|
|
|
|
idx = indices.ptr<int>();
|
|
|
|
|
|
|
|
//printf( "total_size = %d, cdims = %d, iters = %d\n", total_size, cdims, iters );
|
|
|
|
|
|
|
|
Mat bit_mask(1, (total_size + 7)/8, CV_8U, Scalar(0));
|
|
|
|
|
|
|
|
#define GET_BIT(n) (bit_mask.data[(n)/8] & (1 << ((n)&7)))
|
|
|
|
#define SET_BIT(n) bit_mask.data[(n)/8] |= (1 << ((n)&7))
|
|
|
|
|
|
|
|
// set random histogram bins' values to the linear indices of the bins
|
|
|
|
for( i = 0; i < iters; i++ )
|
|
|
|
{
|
|
|
|
int lin_idx = 0;
|
|
|
|
for( j = 0; j < cdims; j++ )
|
|
|
|
{
|
|
|
|
int t = cvtest::randInt(rng) % dims[j];
|
|
|
|
idx[i*cdims + j] = t;
|
|
|
|
lin_idx = lin_idx*dims[j] + t;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( cvtest::randInt(rng) % 8 || GET_BIT(lin_idx) )
|
|
|
|
{
|
|
|
|
values0.at<float>(i) = (float)(lin_idx+1);
|
|
|
|
SET_BIT(lin_idx);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
// some histogram bins will not be initialized intentionally,
|
|
|
|
// they should be equal to the default value
|
|
|
|
values0.at<float>(i) = default_value;
|
|
|
|
}
|
|
|
|
|
|
|
|
// do the second pass to make values0 consistent with bit_mask
|
|
|
|
for( i = 0; i < iters; i++ )
|
|
|
|
{
|
|
|
|
int lin_idx = 0;
|
|
|
|
for( j = 0; j < cdims; j++ )
|
|
|
|
lin_idx = lin_idx*dims[j] + idx[i*cdims + j];
|
|
|
|
|
|
|
|
if( GET_BIT(lin_idx) )
|
|
|
|
values0.at<float>(i) = (float)(lin_idx+1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_QueryHistTest::run_func(void)
|
|
|
|
{
|
|
|
|
int i, iters = values.cols;
|
|
|
|
CvArr* h = hist[0]->bins;
|
|
|
|
const int* idx = indices.ptr<int>();
|
|
|
|
float* val = values.ptr<float>();
|
|
|
|
float default_value = 0.f;
|
|
|
|
|
|
|
|
// stage 1: write bins
|
|
|
|
if( cdims == 1 )
|
|
|
|
for( i = 0; i < iters; i++ )
|
|
|
|
{
|
|
|
|
float v0 = values0.at<float>(i);
|
|
|
|
if( fabs(v0 - default_value) < FLT_EPSILON )
|
|
|
|
continue;
|
|
|
|
if( !(i % 2) )
|
|
|
|
{
|
|
|
|
if( !(i % 4) )
|
|
|
|
cvSetReal1D( h, idx[i], v0 );
|
|
|
|
else
|
|
|
|
*(float*)cvPtr1D( h, idx[i] ) = v0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
cvSetRealND( h, idx+i, v0 );
|
|
|
|
}
|
|
|
|
else if( cdims == 2 )
|
|
|
|
for( i = 0; i < iters; i++ )
|
|
|
|
{
|
|
|
|
float v0 = values0.at<float>(i);
|
|
|
|
if( fabs(v0 - default_value) < FLT_EPSILON )
|
|
|
|
continue;
|
|
|
|
if( !(i % 2) )
|
|
|
|
{
|
|
|
|
if( !(i % 4) )
|
|
|
|
cvSetReal2D( h, idx[i*2], idx[i*2+1], v0 );
|
|
|
|
else
|
|
|
|
*(float*)cvPtr2D( h, idx[i*2], idx[i*2+1] ) = v0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
cvSetRealND( h, idx+i*2, v0 );
|
|
|
|
}
|
|
|
|
else if( cdims == 3 )
|
|
|
|
for( i = 0; i < iters; i++ )
|
|
|
|
{
|
|
|
|
float v0 = values0.at<float>(i);
|
|
|
|
if( fabs(v0 - default_value) < FLT_EPSILON )
|
|
|
|
continue;
|
|
|
|
if( !(i % 2) )
|
|
|
|
{
|
|
|
|
if( !(i % 4) )
|
|
|
|
cvSetReal3D( h, idx[i*3], idx[i*3+1], idx[i*3+2], v0 );
|
|
|
|
else
|
|
|
|
*(float*)cvPtr3D( h, idx[i*3], idx[i*3+1], idx[i*3+2] ) = v0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
cvSetRealND( h, idx+i*3, v0 );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
for( i = 0; i < iters; i++ )
|
|
|
|
{
|
|
|
|
float v0 = values0.at<float>(i);
|
|
|
|
if( fabs(v0 - default_value) < FLT_EPSILON )
|
|
|
|
continue;
|
|
|
|
if( !(i % 2) )
|
|
|
|
cvSetRealND( h, idx+i*cdims, v0 );
|
|
|
|
else
|
|
|
|
*(float*)cvPtrND( h, idx+i*cdims ) = v0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// stage 2: read bins
|
|
|
|
if( cdims == 1 )
|
|
|
|
for( i = 0; i < iters; i++ )
|
|
|
|
{
|
|
|
|
if( !(i % 2) )
|
|
|
|
val[i] = *(float*)cvPtr1D( h, idx[i] );
|
|
|
|
else
|
|
|
|
val[i] = (float)cvGetReal1D( h, idx[i] );
|
|
|
|
}
|
|
|
|
else if( cdims == 2 )
|
|
|
|
for( i = 0; i < iters; i++ )
|
|
|
|
{
|
|
|
|
if( !(i % 2) )
|
|
|
|
val[i] = *(float*)cvPtr2D( h, idx[i*2], idx[i*2+1] );
|
|
|
|
else
|
|
|
|
val[i] = (float)cvGetReal2D( h, idx[i*2], idx[i*2+1] );
|
|
|
|
}
|
|
|
|
else if( cdims == 3 )
|
|
|
|
for( i = 0; i < iters; i++ )
|
|
|
|
{
|
|
|
|
if( !(i % 2) )
|
|
|
|
val[i] = *(float*)cvPtr3D( h, idx[i*3], idx[i*3+1], idx[i*3+2] );
|
|
|
|
else
|
|
|
|
val[i] = (float)cvGetReal3D( h, idx[i*3], idx[i*3+1], idx[i*3+2] );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
for( i = 0; i < iters; i++ )
|
|
|
|
{
|
|
|
|
if( !(i % 2) )
|
|
|
|
val[i] = *(float*)cvPtrND( h, idx+i*cdims );
|
|
|
|
else
|
|
|
|
val[i] = (float)cvGetRealND( h, idx+i*cdims );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_QueryHistTest::validate_test_results( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
int i, j, iters = values.cols;
|
|
|
|
|
|
|
|
for( i = 0; i < iters; i++ )
|
|
|
|
{
|
|
|
|
float v = values.at<float>(i), v0 = values0.at<float>(i);
|
|
|
|
|
|
|
|
if( cvIsNaN(v) || cvIsInf(v) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "The bin #%d has invalid value\n", i );
|
|
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
}
|
|
|
|
else if( fabs(v - v0) > FLT_EPSILON )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "The bin #%d = %g, while it should be %g\n", i, v, v0 );
|
|
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( code < 0 )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "The bin index = (" );
|
|
|
|
for( j = 0; j < cdims; j++ )
|
|
|
|
ts->printf( cvtest::TS::LOG, "%d%s", indices.at<int>(i*cdims + j),
|
|
|
|
j < cdims-1 ? ", " : ")\n" );
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( code < 0 )
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////// cvGetMinMaxHistValue //////////////
|
|
|
|
|
|
|
|
class CV_MinMaxHistTest : public CV_BaseHistTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_MinMaxHistTest();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void run_func(void);
|
|
|
|
void init_hist(int, int);
|
|
|
|
int validate_test_results( int test_case_idx );
|
|
|
|
int min_idx[CV_MAX_DIM], max_idx[CV_MAX_DIM];
|
|
|
|
float min_val, max_val;
|
|
|
|
int min_idx0[CV_MAX_DIM], max_idx0[CV_MAX_DIM];
|
|
|
|
float min_val0, max_val0;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CV_MinMaxHistTest::CV_MinMaxHistTest()
|
|
|
|
{
|
|
|
|
hist_count = 1;
|
|
|
|
gen_random_hist = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_MinMaxHistTest::init_hist(int test_case_idx, int hist_i)
|
|
|
|
{
|
|
|
|
int i, eq = 1;
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
CV_BaseHistTest::init_hist( test_case_idx, hist_i );
|
|
|
|
|
|
|
|
for(;;)
|
|
|
|
{
|
|
|
|
for( i = 0; i < cdims; i++ )
|
|
|
|
{
|
|
|
|
min_idx0[i] = cvtest::randInt(rng) % dims[i];
|
|
|
|
max_idx0[i] = cvtest::randInt(rng) % dims[i];
|
|
|
|
eq &= min_idx0[i] == max_idx0[i];
|
|
|
|
}
|
|
|
|
if( !eq || total_size == 1 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
min_val0 = (float)(-cvtest::randReal(rng)*10 - FLT_EPSILON);
|
|
|
|
max_val0 = (float)(cvtest::randReal(rng)*10 + FLT_EPSILON + gen_hist_max_val);
|
|
|
|
|
|
|
|
if( total_size == 1 )
|
|
|
|
min_val0 = max_val0;
|
|
|
|
|
|
|
|
cvSetRealND( hist[0]->bins, min_idx0, min_val0 );
|
|
|
|
cvSetRealND( hist[0]->bins, max_idx0, max_val0 );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_MinMaxHistTest::run_func(void)
|
|
|
|
{
|
|
|
|
if( hist_type != CV_HIST_ARRAY && test_cpp )
|
|
|
|
{
|
|
|
|
cv::SparseMat h;
|
|
|
|
((CvSparseMat*)hist[0]->bins)->copyToSparseMat(h);
|
|
|
|
double _min_val = 0, _max_val = 0;
|
|
|
|
cv::minMaxLoc(h, &_min_val, &_max_val, min_idx, max_idx );
|
|
|
|
min_val = (float)_min_val;
|
|
|
|
max_val = (float)_max_val;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
cvGetMinMaxHistValue( hist[0], &min_val, &max_val, min_idx, max_idx );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_MinMaxHistTest::validate_test_results( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
|
|
|
|
if( cvIsNaN(min_val) || cvIsInf(min_val) ||
|
|
|
|
cvIsNaN(max_val) || cvIsInf(max_val) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG,
|
|
|
|
"The extrema histogram bin values are invalid (min = %g, max = %g)\n", min_val, max_val );
|
|
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
}
|
|
|
|
else if( fabs(min_val - min_val0) > FLT_EPSILON ||
|
|
|
|
fabs(max_val - max_val0) > FLT_EPSILON )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG,
|
|
|
|
"The extrema histogram bin values are incorrect: (min = %g, should be = %g), (max = %g, should be = %g)\n",
|
|
|
|
min_val, min_val0, max_val, max_val0 );
|
|
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for( i = 0; i < cdims; i++ )
|
|
|
|
{
|
|
|
|
if( min_idx[i] != min_idx0[i] || max_idx[i] != max_idx0[i] )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG,
|
|
|
|
"The %d-th coordinates of extrema histogram bin values are incorrect: "
|
|
|
|
"(min = %d, should be = %d), (max = %d, should be = %d)\n",
|
|
|
|
i, min_idx[i], min_idx0[i], max_idx[i], max_idx0[i] );
|
|
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( code < 0 )
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////// cvNormalizeHist //////////////
|
|
|
|
|
|
|
|
class CV_NormHistTest : public CV_BaseHistTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_NormHistTest();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void run_func(void);
|
|
|
|
int validate_test_results( int test_case_idx );
|
|
|
|
double factor;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CV_NormHistTest::CV_NormHistTest()
|
|
|
|
{
|
|
|
|
hist_count = 1;
|
|
|
|
gen_random_hist = 1;
|
|
|
|
factor = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_NormHistTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
int code = CV_BaseHistTest::prepare_test_case( test_case_idx );
|
|
|
|
|
|
|
|
if( code > 0 )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
factor = cvtest::randReal(rng)*10 + 0.1;
|
|
|
|
if( hist_type == CV_HIST_SPARSE &&
|
|
|
|
((CvSparseMat*)hist[0]->bins)->heap->active_count == 0 )
|
|
|
|
factor = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_NormHistTest::run_func(void)
|
|
|
|
{
|
|
|
|
if( hist_type != CV_HIST_ARRAY && test_cpp )
|
|
|
|
{
|
|
|
|
cv::SparseMat h;
|
|
|
|
((CvSparseMat*)hist[0]->bins)->copyToSparseMat(h);
|
|
|
|
cv::normalize(h, h, factor, CV_L1);
|
|
|
|
cvReleaseSparseMat((CvSparseMat**)&hist[0]->bins);
|
|
|
|
hist[0]->bins = cvCreateSparseMat(h);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
cvNormalizeHist( hist[0], factor );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_NormHistTest::validate_test_results( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
double sum = 0;
|
|
|
|
|
|
|
|
if( hist_type == CV_HIST_ARRAY )
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
const float* ptr = (float*)cvPtr1D( hist[0]->bins, 0 );
|
|
|
|
|
|
|
|
for( i = 0; i < total_size; i++ )
|
|
|
|
sum += ptr[i];
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CvSparseMat* sparse = (CvSparseMat*)hist[0]->bins;
|
|
|
|
CvSparseMatIterator iterator;
|
|
|
|
CvSparseNode *node;
|
|
|
|
|
|
|
|
for( node = cvInitSparseMatIterator( sparse, &iterator );
|
|
|
|
node != 0; node = cvGetNextSparseNode( &iterator ))
|
|
|
|
{
|
|
|
|
sum += *(float*)CV_NODE_VAL(sparse,node);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( cvIsNaN(sum) || cvIsInf(sum) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG,
|
|
|
|
"The normalized histogram has invalid sum =%g\n", sum );
|
|
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
}
|
|
|
|
else if( fabs(sum - factor) > FLT_EPSILON*10*fabs(factor) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG,
|
|
|
|
"The normalized histogram has incorrect sum =%g, while it should be =%g\n", sum, factor );
|
|
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( code < 0 )
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////// cvThreshHist //////////////
|
|
|
|
|
|
|
|
class CV_ThreshHistTest : public CV_BaseHistTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_ThreshHistTest();
|
|
|
|
~CV_ThreshHistTest();
|
|
|
|
void clear();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void run_func(void);
|
|
|
|
int validate_test_results( int test_case_idx );
|
|
|
|
Mat indices;
|
|
|
|
Mat values;
|
|
|
|
int orig_nz_count;
|
|
|
|
|
|
|
|
double threshold;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CV_ThreshHistTest::CV_ThreshHistTest() : threshold(0)
|
|
|
|
{
|
|
|
|
hist_count = 1;
|
|
|
|
gen_random_hist = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CV_ThreshHistTest::~CV_ThreshHistTest()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_ThreshHistTest::clear()
|
|
|
|
{
|
|
|
|
CV_BaseHistTest::clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_ThreshHistTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
int code = CV_BaseHistTest::prepare_test_case( test_case_idx );
|
|
|
|
|
|
|
|
if( code > 0 )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
threshold = cvtest::randReal(rng)*gen_hist_max_val;
|
|
|
|
|
|
|
|
if( hist_type == CV_HIST_ARRAY )
|
|
|
|
{
|
|
|
|
orig_nz_count = total_size;
|
|
|
|
|
|
|
|
values = Mat( 1, total_size, CV_32F );
|
|
|
|
indices = Mat();
|
|
|
|
memcpy( values.ptr<float>(), cvPtr1D( hist[0]->bins, 0 ), total_size*sizeof(float) );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CvSparseMat* sparse = (CvSparseMat*)hist[0]->bins;
|
|
|
|
CvSparseMatIterator iterator;
|
|
|
|
CvSparseNode* node;
|
|
|
|
int i, k;
|
|
|
|
|
|
|
|
orig_nz_count = sparse->heap->active_count;
|
|
|
|
|
|
|
|
values = Mat( 1, orig_nz_count+1, CV_32F );
|
|
|
|
indices = Mat( 1, (orig_nz_count+1)*cdims, CV_32S );
|
|
|
|
|
|
|
|
for( node = cvInitSparseMatIterator( sparse, &iterator ), i = 0;
|
|
|
|
node != 0; node = cvGetNextSparseNode( &iterator ), i++ )
|
|
|
|
{
|
|
|
|
const int* idx = CV_NODE_IDX(sparse,node);
|
|
|
|
|
|
|
|
OPENCV_ASSERT( i < orig_nz_count, "CV_ThreshHistTest::prepare_test_case", "Buffer overflow" );
|
|
|
|
|
|
|
|
values.at<float>(i) = *(float*)CV_NODE_VAL(sparse,node);
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
indices.at<int>(i*cdims + k) = idx[k];
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENCV_ASSERT( i == orig_nz_count, "Unmatched buffer size",
|
|
|
|
"CV_ThreshHistTest::prepare_test_case" );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_ThreshHistTest::run_func(void)
|
|
|
|
{
|
|
|
|
cvThreshHist( hist[0], threshold );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_ThreshHistTest::validate_test_results( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
int i;
|
|
|
|
float* ptr0 = values.ptr<float>();
|
|
|
|
float* ptr = 0;
|
|
|
|
CvSparseMat* sparse = 0;
|
|
|
|
|
|
|
|
if( hist_type == CV_HIST_ARRAY )
|
|
|
|
ptr = (float*)cvPtr1D( hist[0]->bins, 0 );
|
|
|
|
else
|
|
|
|
sparse = (CvSparseMat*)hist[0]->bins;
|
|
|
|
|
|
|
|
if( code > 0 )
|
|
|
|
{
|
|
|
|
for( i = 0; i < orig_nz_count; i++ )
|
|
|
|
{
|
|
|
|
float v0 = ptr0[i], v;
|
|
|
|
|
|
|
|
if( hist_type == CV_HIST_ARRAY )
|
|
|
|
v = ptr[i];
|
|
|
|
else
|
|
|
|
{
|
|
|
|
v = (float)cvGetRealND( sparse, indices.ptr<int>() + i*cdims );
|
|
|
|
cvClearND( sparse, indices.ptr<int>() + i*cdims );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( v0 <= threshold ) v0 = 0.f;
|
|
|
|
if( cvIsNaN(v) || cvIsInf(v) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "The %d-th bin is invalid (=%g)\n", i, v );
|
|
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else if( fabs(v0 - v) > FLT_EPSILON*10*fabs(v0) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "The %d-th bin is incorrect (=%g, should be =%g)\n", i, v, v0 );
|
|
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( code > 0 && hist_type == CV_HIST_SPARSE )
|
|
|
|
{
|
|
|
|
if( sparse->heap->active_count > 0 )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG,
|
|
|
|
"There some extra histogram bins in the sparse histogram after the thresholding\n" );
|
|
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( code < 0 )
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////// cvCompareHist //////////////
|
|
|
|
|
|
|
|
class CV_CompareHistTest : public CV_BaseHistTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { MAX_METHOD = 6 };
|
|
|
|
|
|
|
|
CV_CompareHistTest();
|
|
|
|
protected:
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void run_func(void);
|
|
|
|
int validate_test_results( int test_case_idx );
|
|
|
|
double result[MAX_METHOD+1];
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CV_CompareHistTest::CV_CompareHistTest()
|
|
|
|
{
|
|
|
|
hist_count = 2;
|
|
|
|
gen_random_hist = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_CompareHistTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
int code = CV_BaseHistTest::prepare_test_case( test_case_idx );
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_CompareHistTest::run_func(void)
|
|
|
|
{
|
|
|
|
int k;
|
|
|
|
if( hist_type != CV_HIST_ARRAY && test_cpp )
|
|
|
|
{
|
|
|
|
cv::SparseMat h0, h1;
|
|
|
|
((CvSparseMat*)hist[0]->bins)->copyToSparseMat(h0);
|
|
|
|
((CvSparseMat*)hist[1]->bins)->copyToSparseMat(h1);
|
|
|
|
for( k = 0; k < MAX_METHOD; k++ )
|
|
|
|
result[k] = cv::compareHist(h0, h1, k);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
for( k = 0; k < MAX_METHOD; k++ )
|
|
|
|
result[k] = cvCompareHist( hist[0], hist[1], k );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_CompareHistTest::validate_test_results( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
int i;
|
|
|
|
double result0[MAX_METHOD+1];
|
|
|
|
double s0 = 0, s1 = 0, sq0 = 0, sq1 = 0, t;
|
|
|
|
|
|
|
|
for( i = 0; i < MAX_METHOD; i++ )
|
|
|
|
result0[i] = 0;
|
|
|
|
|
|
|
|
if( hist_type == CV_HIST_ARRAY )
|
|
|
|
{
|
|
|
|
float* ptr0 = (float*)cvPtr1D( hist[0]->bins, 0 );
|
|
|
|
float* ptr1 = (float*)cvPtr1D( hist[1]->bins, 0 );
|
|
|
|
|
|
|
|
for( i = 0; i < total_size; i++ )
|
|
|
|
{
|
|
|
|
double v0 = ptr0[i], v1 = ptr1[i];
|
|
|
|
result0[CV_COMP_CORREL] += v0*v1;
|
|
|
|
result0[CV_COMP_INTERSECT] += MIN(v0,v1);
|
|
|
|
if( fabs(v0) > DBL_EPSILON )
|
|
|
|
result0[CV_COMP_CHISQR] += (v0 - v1)*(v0 - v1)/v0;
|
|
|
|
if( fabs(v0 + v1) > DBL_EPSILON )
|
|
|
|
result0[CV_COMP_CHISQR_ALT] += (v0 - v1)*(v0 - v1)/(v0 + v1);
|
|
|
|
s0 += v0;
|
|
|
|
s1 += v1;
|
|
|
|
sq0 += v0*v0;
|
|
|
|
sq1 += v1*v1;
|
|
|
|
result0[CV_COMP_BHATTACHARYYA] += sqrt(v0*v1);
|
|
|
|
{
|
|
|
|
if( fabs(v0) <= DBL_EPSILON )
|
|
|
|
continue;
|
|
|
|
if( fabs(v1) <= DBL_EPSILON )
|
|
|
|
v1 = 1e-10;
|
|
|
|
result0[CV_COMP_KL_DIV] += v0 * std::log( v0 / v1 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CvSparseMat* sparse0 = (CvSparseMat*)hist[0]->bins;
|
|
|
|
CvSparseMat* sparse1 = (CvSparseMat*)hist[1]->bins;
|
|
|
|
CvSparseMatIterator iterator;
|
|
|
|
CvSparseNode* node;
|
|
|
|
|
|
|
|
for( node = cvInitSparseMatIterator( sparse0, &iterator );
|
|
|
|
node != 0; node = cvGetNextSparseNode( &iterator ) )
|
|
|
|
{
|
|
|
|
const int* idx = CV_NODE_IDX(sparse0, node);
|
|
|
|
double v0 = *(float*)CV_NODE_VAL(sparse0, node);
|
|
|
|
double v1 = (float)cvGetRealND(sparse1, idx);
|
|
|
|
|
|
|
|
result0[CV_COMP_CORREL] += v0*v1;
|
|
|
|
result0[CV_COMP_INTERSECT] += MIN(v0,v1);
|
|
|
|
if( fabs(v0) > DBL_EPSILON )
|
|
|
|
result0[CV_COMP_CHISQR] += (v0 - v1)*(v0 - v1)/v0;
|
|
|
|
if( fabs(v0 + v1) > DBL_EPSILON )
|
|
|
|
result0[CV_COMP_CHISQR_ALT] += (v0 - v1)*(v0 - v1)/(v0 + v1);
|
|
|
|
s0 += v0;
|
|
|
|
sq0 += v0*v0;
|
|
|
|
result0[CV_COMP_BHATTACHARYYA] += sqrt(v0*v1);
|
|
|
|
{
|
|
|
|
if (v0 <= DBL_EPSILON)
|
|
|
|
continue;
|
|
|
|
if (!v1)
|
|
|
|
v1 = 1e-10;
|
|
|
|
result0[CV_COMP_KL_DIV] += v0 * std::log( v0 / v1 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for( node = cvInitSparseMatIterator( sparse1, &iterator );
|
|
|
|
node != 0; node = cvGetNextSparseNode( &iterator ) )
|
|
|
|
{
|
|
|
|
double v1 = *(float*)CV_NODE_VAL(sparse1, node);
|
|
|
|
s1 += v1;
|
|
|
|
sq1 += v1*v1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
result0[CV_COMP_CHISQR_ALT] *= 2;
|
|
|
|
|
|
|
|
t = (sq0 - s0*s0/total_size)*(sq1 - s1*s1/total_size);
|
|
|
|
result0[CV_COMP_CORREL] = fabs(t) > DBL_EPSILON ?
|
|
|
|
(result0[CV_COMP_CORREL] - s0*s1/total_size)/sqrt(t) : 1;
|
|
|
|
|
|
|
|
s1 *= s0;
|
|
|
|
s0 = result0[CV_COMP_BHATTACHARYYA];
|
|
|
|
s0 = 1. - s0*(s1 > FLT_EPSILON ? 1./sqrt(s1) : 1.);
|
|
|
|
result0[CV_COMP_BHATTACHARYYA] = sqrt(MAX(s0,0.));
|
|
|
|
|
|
|
|
for( i = 0; i < MAX_METHOD; i++ )
|
|
|
|
{
|
|
|
|
double v = result[i], v0 = result0[i];
|
|
|
|
const char* method_name =
|
|
|
|
i == CV_COMP_CHISQR ? "Chi-Square" :
|
|
|
|
i == CV_COMP_CHISQR_ALT ? "Alternative Chi-Square" :
|
|
|
|
i == CV_COMP_CORREL ? "Correlation" :
|
|
|
|
i == CV_COMP_INTERSECT ? "Intersection" :
|
|
|
|
i == CV_COMP_BHATTACHARYYA ? "Bhattacharyya" :
|
|
|
|
i == CV_COMP_KL_DIV ? "Kullback-Leibler" : "Unknown";
|
|
|
|
|
|
|
|
if( cvIsNaN(v) || cvIsInf(v) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "The comparison result using the method #%d (%s) is invalid (=%g)\n",
|
|
|
|
i, method_name, v );
|
|
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else if( fabs(v0 - v) > FLT_EPSILON*14*MAX(fabs(v0),0.1) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "The comparison result using the method #%d (%s)\n\tis inaccurate (=%g, should be =%g)\n",
|
|
|
|
i, method_name, v, v0 );
|
|
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( code < 0 )
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////// cvCalcHist //////////////
|
|
|
|
|
|
|
|
class CV_CalcHistTest : public CV_BaseHistTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_CalcHistTest();
|
|
|
|
~CV_CalcHistTest();
|
|
|
|
void clear();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void run_func(void);
|
|
|
|
int validate_test_results( int test_case_idx );
|
|
|
|
vector<Mat> images;
|
|
|
|
vector<int> channels;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CV_CalcHistTest::CV_CalcHistTest() : images(CV_MAX_DIM+1), channels(CV_MAX_DIM+1)
|
|
|
|
{
|
|
|
|
hist_count = 2;
|
|
|
|
gen_random_hist = 0;
|
|
|
|
init_ranges = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CV_CalcHistTest::~CV_CalcHistTest()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_CalcHistTest::clear()
|
|
|
|
{
|
|
|
|
CV_BaseHistTest::clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_CalcHistTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
int code = CV_BaseHistTest::prepare_test_case( test_case_idx );
|
|
|
|
|
|
|
|
if( code > 0 )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for( i = 0; i <= CV_MAX_DIM; i++ )
|
|
|
|
{
|
|
|
|
if( i < cdims )
|
|
|
|
{
|
|
|
|
int nch = 1; //cvtest::randInt(rng) % 3 + 1;
|
|
|
|
images[i] = Mat(img_size, CV_MAKETYPE(img_type, nch));
|
|
|
|
channels[i] = cvtest::randInt(rng) % nch;
|
|
|
|
cvtest::randUni( rng, images[i], Scalar::all(low), Scalar::all(high) );
|
|
|
|
}
|
|
|
|
else if( i == CV_MAX_DIM )
|
|
|
|
{
|
|
|
|
if( cvtest::randInt(rng) % 2 )
|
|
|
|
{
|
|
|
|
// create mask
|
|
|
|
images[i] = Mat(img_size, CV_8U);
|
|
|
|
|
|
|
|
// make ~25% pixels in the mask non-zero
|
|
|
|
cvtest::randUni( rng, images[i], Scalar::all(-2), Scalar::all(2) );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
images[i] = Mat();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_CalcHistTest::run_func(void)
|
|
|
|
{
|
|
|
|
int size[CV_MAX_DIM];
|
|
|
|
int hdims = cvGetDims( hist[0]->bins, size);
|
|
|
|
bool huniform = CV_IS_UNIFORM_HIST(hist[0]);
|
|
|
|
|
|
|
|
const float* uranges[CV_MAX_DIM] = {0};
|
|
|
|
const float** hranges = 0;
|
|
|
|
|
|
|
|
if( hist[0]->type & CV_HIST_RANGES_FLAG )
|
|
|
|
{
|
|
|
|
hranges = (const float**)hist[0]->thresh2;
|
|
|
|
if( huniform )
|
|
|
|
{
|
|
|
|
for(int i = 0; i < hdims; i++ )
|
|
|
|
uranges[i] = &hist[0]->thresh[i][0];
|
|
|
|
hranges = uranges;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<cv::Mat> imagesv(cdims);
|
|
|
|
copy(images.begin(), images.begin() + cdims, imagesv.begin());
|
|
|
|
|
|
|
|
Mat mask = images[CV_MAX_DIM];
|
|
|
|
if( !CV_IS_SPARSE_HIST(hist[0]) )
|
|
|
|
{
|
|
|
|
cv::Mat H = cv::cvarrToMat(hist[0]->bins);
|
|
|
|
if(huniform)
|
|
|
|
{
|
|
|
|
vector<int> emptyChannels;
|
|
|
|
vector<int> hSize(hdims);
|
|
|
|
for(int i = 0; i < hdims; i++)
|
|
|
|
hSize[i] = size[i];
|
|
|
|
vector<float> vranges;
|
|
|
|
if(hranges)
|
|
|
|
{
|
|
|
|
vranges.resize(hdims*2);
|
|
|
|
for(int i = 0; i < hdims; i++ )
|
|
|
|
{
|
|
|
|
vranges[i*2 ] = hist[0]->thresh[i][0];
|
|
|
|
vranges[i*2+1] = hist[0]->thresh[i][1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cv::calcHist(imagesv, emptyChannels, mask, H, hSize, vranges);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cv::calcHist( &imagesv[0], (int)imagesv.size(), 0, mask,
|
|
|
|
H, cvGetDims(hist[0]->bins), H.size, hranges, huniform );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CvSparseMat* sparsemat = (CvSparseMat*)hist[0]->bins;
|
|
|
|
|
|
|
|
cvZero( hist[0]->bins );
|
|
|
|
|
|
|
|
cv::SparseMat sH;
|
|
|
|
sparsemat->copyToSparseMat(sH);
|
|
|
|
|
|
|
|
cv::calcHist( &imagesv[0], (int)imagesv.size(), 0, mask, sH, sH.dims(),
|
|
|
|
sH.dims() > 0 ? sH.hdr->size : 0, hranges, huniform, false);
|
|
|
|
|
|
|
|
cv::SparseMatConstIterator it = sH.begin();
|
|
|
|
int nz = (int)sH.nzcount();
|
|
|
|
for(int i = 0; i < nz; i++, ++it )
|
|
|
|
{
|
|
|
|
CV_Assert(it.ptr != NULL);
|
|
|
|
*(float*)cvPtrND(sparsemat, it.node()->idx, 0, -2) = *(const float*)it.ptr;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
cvTsCalcHist( const vector<Mat>& images, CvHistogram* hist, Mat mask, const vector<int>& channels )
|
|
|
|
{
|
|
|
|
int x, y, k;
|
|
|
|
union
|
|
|
|
{
|
|
|
|
const float* fl;
|
|
|
|
const uchar* ptr;
|
|
|
|
}
|
|
|
|
plane[CV_MAX_DIM];
|
|
|
|
int nch[CV_MAX_DIM];
|
|
|
|
int dims[CV_MAX_DIM];
|
|
|
|
int uniform = CV_IS_UNIFORM_HIST(hist);
|
|
|
|
|
|
|
|
int cdims = cvGetDims( hist->bins, dims );
|
|
|
|
cvZero( hist->bins );
|
|
|
|
|
|
|
|
Size img_size = images[0].size();
|
|
|
|
int img_depth = images[0].depth();
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
{
|
|
|
|
nch[k] = images[k].channels();
|
|
|
|
}
|
|
|
|
|
|
|
|
for( y = 0; y < img_size.height; y++ )
|
|
|
|
{
|
|
|
|
const uchar* mptr = mask.empty() ? 0 : mask.ptr<uchar>(y);
|
|
|
|
|
|
|
|
if( img_depth == CV_8U )
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
plane[k].ptr = images[k].ptr<uchar>(y) + channels[k];
|
|
|
|
else
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
plane[k].fl = images[k].ptr<float>(y) + channels[k];
|
|
|
|
|
|
|
|
for( x = 0; x < img_size.width; x++ )
|
|
|
|
{
|
|
|
|
float val[CV_MAX_DIM];
|
|
|
|
int idx[CV_MAX_DIM];
|
|
|
|
|
|
|
|
if( mptr && !mptr[x] )
|
|
|
|
continue;
|
|
|
|
if( img_depth == CV_8U )
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
val[k] = plane[k].ptr[x*nch[k]];
|
|
|
|
else
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
val[k] = plane[k].fl[x*nch[k]];
|
|
|
|
|
|
|
|
idx[cdims-1] = -1;
|
|
|
|
|
|
|
|
if( uniform )
|
|
|
|
{
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
{
|
|
|
|
double v = val[k], lo = hist->thresh[k][0], hi = hist->thresh[k][1];
|
|
|
|
idx[k] = cvFloor((v - lo)*dims[k]/(hi - lo));
|
|
|
|
if( idx[k] < 0 || idx[k] >= dims[k] )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
{
|
|
|
|
float v = val[k];
|
|
|
|
float* t = hist->thresh2[k];
|
|
|
|
int j, n = dims[k];
|
|
|
|
|
|
|
|
for( j = 0; j <= n; j++ )
|
|
|
|
if( v < t[j] )
|
|
|
|
break;
|
|
|
|
if( j <= 0 || j > n )
|
|
|
|
break;
|
|
|
|
idx[k] = j-1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( k < cdims )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
(*(float*)cvPtrND( hist->bins, idx ))++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_CalcHistTest::validate_test_results( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
double diff;
|
|
|
|
cvTsCalcHist( images, hist[1], images[CV_MAX_DIM], channels );
|
|
|
|
diff = cvCompareHist( hist[0], hist[1], CV_COMP_CHISQR );
|
|
|
|
if( diff > DBL_EPSILON )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "The histogram does not match to the reference one\n" );
|
|
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
if( code < 0 )
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CV_CalcHistTest hist_calc_test;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
////////////// cvCalcBackProject //////////////
|
|
|
|
|
|
|
|
class CV_CalcBackProjectTest : public CV_BaseHistTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_CalcBackProjectTest();
|
|
|
|
~CV_CalcBackProjectTest();
|
|
|
|
void clear();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void run_func(void);
|
|
|
|
int validate_test_results( int test_case_idx );
|
|
|
|
vector<Mat> images;
|
|
|
|
vector<int> channels;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CV_CalcBackProjectTest::CV_CalcBackProjectTest() : images(CV_MAX_DIM+3), channels(CV_MAX_DIM+3)
|
|
|
|
{
|
|
|
|
hist_count = 1;
|
|
|
|
gen_random_hist = 0;
|
|
|
|
init_ranges = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CV_CalcBackProjectTest::~CV_CalcBackProjectTest()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_CalcBackProjectTest::clear()
|
|
|
|
{
|
|
|
|
CV_BaseHistTest::clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_CalcBackProjectTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
int code = CV_BaseHistTest::prepare_test_case( test_case_idx );
|
|
|
|
|
|
|
|
if( code > 0 )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
int i, j, n, img_len = img_size.area();
|
|
|
|
|
|
|
|
for( i = 0; i < CV_MAX_DIM + 3; i++ )
|
|
|
|
{
|
|
|
|
if( i < cdims )
|
|
|
|
{
|
|
|
|
int nch = 1; //cvtest::randInt(rng) % 3 + 1;
|
|
|
|
images[i] = Mat(img_size, CV_MAKETYPE(img_type, nch));
|
|
|
|
channels[i] = cvtest::randInt(rng) % nch;
|
|
|
|
|
|
|
|
cvtest::randUni( rng, images[i], Scalar::all(low), Scalar::all(high) );
|
|
|
|
}
|
|
|
|
else if( i == CV_MAX_DIM )
|
|
|
|
{
|
|
|
|
if(cvtest::randInt(rng) % 2 )
|
|
|
|
{
|
|
|
|
// create mask
|
|
|
|
images[i] = Mat(img_size, CV_8U);
|
|
|
|
// make ~25% pixels in the mask non-zero
|
|
|
|
cvtest::randUni( rng, images[i], Scalar::all(-2), Scalar::all(2) );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
images[i] = Mat();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if( i > CV_MAX_DIM )
|
|
|
|
{
|
|
|
|
images[i] = Mat(img_size, images[0].type());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cvTsCalcHist( images, hist[0], images[CV_MAX_DIM], channels );
|
|
|
|
|
|
|
|
// now modify the images a bit to add some zeros go to the backprojection
|
|
|
|
n = cvtest::randInt(rng) % (img_len/20+1);
|
|
|
|
for( i = 0; i < cdims; i++ )
|
|
|
|
{
|
|
|
|
uchar* data = images[i].data;
|
|
|
|
for( j = 0; j < n; j++ )
|
|
|
|
{
|
|
|
|
int idx = cvtest::randInt(rng) % img_len;
|
|
|
|
double val = cvtest::randReal(rng)*(high - low) + low;
|
|
|
|
|
|
|
|
if( img_type == CV_8U )
|
|
|
|
((uchar*)data)[idx] = (uchar)cvRound(val);
|
|
|
|
else
|
|
|
|
((float*)data)[idx] = (float)val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_CalcBackProjectTest::run_func(void)
|
|
|
|
{
|
|
|
|
int size[CV_MAX_DIM];
|
|
|
|
int hdims = cvGetDims( hist[0]->bins, size );
|
|
|
|
|
|
|
|
bool huniform = CV_IS_UNIFORM_HIST(hist[0]);
|
|
|
|
const float* uranges[CV_MAX_DIM] = {0};
|
|
|
|
const float** hranges = 0;
|
|
|
|
|
|
|
|
if( hist[0]->type & CV_HIST_RANGES_FLAG )
|
|
|
|
{
|
|
|
|
hranges = (const float**)hist[0]->thresh2;
|
|
|
|
if( huniform )
|
|
|
|
{
|
|
|
|
for(int i = 0; i < hdims; i++ )
|
|
|
|
uranges[i] = &hist[0]->thresh[i][0];
|
|
|
|
hranges = uranges;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::vector<cv::Mat> imagesv(hdims);
|
|
|
|
copy(images.begin(), images.begin() + hdims, imagesv.begin());
|
|
|
|
|
|
|
|
cv::Mat dst = images[CV_MAX_DIM+1];
|
|
|
|
|
|
|
|
CV_Assert( dst.size() == imagesv[0].size() && dst.depth() == imagesv[0].depth() );
|
|
|
|
|
|
|
|
if( !CV_IS_SPARSE_HIST(hist[0]) )
|
|
|
|
{
|
|
|
|
cv::Mat H = cv::cvarrToMat(hist[0]->bins);
|
|
|
|
if(huniform)
|
|
|
|
{
|
|
|
|
vector<int> emptyChannels;
|
|
|
|
vector<float> vranges;
|
|
|
|
if(hranges)
|
|
|
|
{
|
|
|
|
vranges.resize(hdims*2);
|
|
|
|
for(int i = 0; i < hdims; i++ )
|
|
|
|
{
|
|
|
|
vranges[i*2 ] = hist[0]->thresh[i][0];
|
|
|
|
vranges[i*2+1] = hist[0]->thresh[i][1];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
cv::calcBackProject(imagesv, emptyChannels, H, dst, vranges, 1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cv::calcBackProject( &imagesv[0], (int)imagesv.size(),
|
|
|
|
0, H, dst, hranges, 1, false );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
cv::SparseMat sH;
|
|
|
|
((const CvSparseMat*)hist[0]->bins)->copyToSparseMat(sH);
|
|
|
|
cv::calcBackProject( &imagesv[0], (int)imagesv.size(),
|
|
|
|
0, sH, dst, hranges, 1, huniform );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
cvTsCalcBackProject( const vector<Mat>& images, Mat dst, CvHistogram* hist, const vector<int>& channels )
|
|
|
|
{
|
|
|
|
int x, y, k, cdims;
|
|
|
|
union
|
|
|
|
{
|
|
|
|
const float* fl;
|
|
|
|
const uchar* ptr;
|
|
|
|
}
|
|
|
|
plane[CV_MAX_DIM];
|
|
|
|
int nch[CV_MAX_DIM];
|
|
|
|
int dims[CV_MAX_DIM];
|
|
|
|
int uniform = CV_IS_UNIFORM_HIST(hist);
|
|
|
|
Size img_size = images[0].size();
|
|
|
|
int img_depth = images[0].depth();
|
|
|
|
|
|
|
|
cdims = cvGetDims( hist->bins, dims );
|
|
|
|
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
nch[k] = images[k].channels();
|
|
|
|
|
|
|
|
for( y = 0; y < img_size.height; y++ )
|
|
|
|
{
|
|
|
|
if( img_depth == CV_8U )
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
plane[k].ptr = images[k].ptr<uchar>(y) + channels[k];
|
|
|
|
else
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
plane[k].fl = images[k].ptr<float>(y) + channels[k];
|
|
|
|
|
|
|
|
for( x = 0; x < img_size.width; x++ )
|
|
|
|
{
|
|
|
|
float val[CV_MAX_DIM];
|
|
|
|
float bin_val = 0;
|
|
|
|
int idx[CV_MAX_DIM];
|
|
|
|
|
|
|
|
if( img_depth == CV_8U )
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
val[k] = plane[k].ptr[x*nch[k]];
|
|
|
|
else
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
val[k] = plane[k].fl[x*nch[k]];
|
|
|
|
idx[cdims-1] = -1;
|
|
|
|
|
|
|
|
if( uniform )
|
|
|
|
{
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
{
|
|
|
|
double v = val[k], lo = hist->thresh[k][0], hi = hist->thresh[k][1];
|
|
|
|
idx[k] = cvFloor((v - lo)*dims[k]/(hi - lo));
|
|
|
|
if( idx[k] < 0 || idx[k] >= dims[k] )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
for( k = 0; k < cdims; k++ )
|
|
|
|
{
|
|
|
|
float v = val[k];
|
|
|
|
float* t = hist->thresh2[k];
|
|
|
|
int j, n = dims[k];
|
|
|
|
|
|
|
|
for( j = 0; j <= n; j++ )
|
|
|
|
if( v < t[j] )
|
|
|
|
break;
|
|
|
|
if( j <= 0 || j > n )
|
|
|
|
break;
|
|
|
|
idx[k] = j-1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( k == cdims )
|
|
|
|
bin_val = (float)cvGetRealND( hist->bins, idx );
|
|
|
|
|
|
|
|
if( img_depth == CV_8U )
|
|
|
|
{
|
|
|
|
int t = cvRound(bin_val);
|
|
|
|
dst.at<uchar>(y, x) = saturate_cast<uchar>(t);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
dst.at<float>(y, x) = bin_val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_CalcBackProjectTest::validate_test_results( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
|
|
|
|
cvTsCalcBackProject( images, images[CV_MAX_DIM+2], hist[0], channels );
|
|
|
|
Mat a = images[CV_MAX_DIM+1], b = images[CV_MAX_DIM+2];
|
|
|
|
double threshold = a.depth() == CV_8U ? 2 : FLT_EPSILON;
|
|
|
|
code = cvtest::cmpEps2( ts, a, b, threshold, true, "Back project image" );
|
|
|
|
|
|
|
|
if( code < 0 )
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////// cvCalcBackProjectPatch //////////////
|
|
|
|
|
|
|
|
class CV_CalcBackProjectPatchTest : public CV_BaseHistTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_CalcBackProjectPatchTest();
|
|
|
|
~CV_CalcBackProjectPatchTest();
|
|
|
|
void clear();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void run_func(void);
|
|
|
|
int validate_test_results( int test_case_idx );
|
|
|
|
vector<Mat> images;
|
|
|
|
vector<int> channels;
|
|
|
|
|
|
|
|
Size patch_size;
|
|
|
|
double factor;
|
|
|
|
int method;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
CV_CalcBackProjectPatchTest::CV_CalcBackProjectPatchTest() :
|
|
|
|
images(CV_MAX_DIM+2), channels(CV_MAX_DIM+2)
|
|
|
|
{
|
|
|
|
hist_count = 1;
|
|
|
|
gen_random_hist = 0;
|
|
|
|
init_ranges = 1;
|
|
|
|
img_max_log_size = 6;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CV_CalcBackProjectPatchTest::~CV_CalcBackProjectPatchTest()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_CalcBackProjectPatchTest::clear()
|
|
|
|
{
|
|
|
|
CV_BaseHistTest::clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_CalcBackProjectPatchTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
int code = CV_BaseHistTest::prepare_test_case( test_case_idx );
|
|
|
|
|
|
|
|
if( code > 0 )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
int i, j, n, img_len = img_size.area();
|
|
|
|
|
|
|
|
patch_size.width = cvtest::randInt(rng) % img_size.width + 1;
|
|
|
|
patch_size.height = cvtest::randInt(rng) % img_size.height + 1;
|
|
|
|
patch_size.width = MIN( patch_size.width, 30 );
|
|
|
|
patch_size.height = MIN( patch_size.height, 30 );
|
|
|
|
|
|
|
|
factor = 1.;
|
|
|
|
method = cvtest::randInt(rng) % CV_CompareHistTest::MAX_METHOD;
|
|
|
|
|
|
|
|
for( i = 0; i < CV_MAX_DIM + 2; i++ )
|
|
|
|
{
|
|
|
|
if( i < cdims )
|
|
|
|
{
|
|
|
|
int nch = 1; //cvtest::randInt(rng) % 3 + 1;
|
|
|
|
images[i] = Mat(img_size, CV_MAKETYPE(img_type, nch));
|
|
|
|
channels[i] = cvtest::randInt(rng) % nch;
|
|
|
|
cvtest::randUni( rng, images[i], Scalar::all(low), Scalar::all(high) );
|
|
|
|
}
|
|
|
|
else if( i >= CV_MAX_DIM )
|
|
|
|
{
|
|
|
|
images[i] = Mat(img_size - patch_size + Size(1, 1), CV_32F);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cvTsCalcHist( images, hist[0], Mat(), channels );
|
|
|
|
cvNormalizeHist( hist[0], factor );
|
|
|
|
|
|
|
|
// now modify the images a bit
|
|
|
|
n = cvtest::randInt(rng) % (img_len/10+1);
|
|
|
|
for( i = 0; i < cdims; i++ )
|
|
|
|
{
|
|
|
|
uchar* data = images[i].data;
|
|
|
|
for( j = 0; j < n; j++ )
|
|
|
|
{
|
|
|
|
int idx = cvtest::randInt(rng) % img_len;
|
|
|
|
double val = cvtest::randReal(rng)*(high - low) + low;
|
|
|
|
|
|
|
|
if( img_type == CV_8U )
|
|
|
|
((uchar*)data)[idx] = (uchar)cvRound(val);
|
|
|
|
else
|
|
|
|
((float*)data)[idx] = (float)val;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_CalcBackProjectPatchTest::run_func(void)
|
|
|
|
{
|
|
|
|
CvMat dst = cvMat(images[CV_MAX_DIM]);
|
|
|
|
vector<CvMat > img(cdims);
|
|
|
|
vector<CvMat*> pimg(cdims);
|
|
|
|
for(int i = 0; i < cdims; i++)
|
|
|
|
{
|
|
|
|
img[i] = cvMat(images[i]);
|
|
|
|
pimg[i] = &img[i];
|
|
|
|
}
|
|
|
|
cvCalcArrBackProjectPatch( (CvArr**)&pimg[0], &dst, cvSize(patch_size), hist[0], method, factor );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
cvTsCalcBackProjectPatch( const vector<Mat>& images, Mat dst, Size patch_size,
|
|
|
|
CvHistogram* hist, int method,
|
|
|
|
double factor, const vector<int>& channels )
|
|
|
|
{
|
|
|
|
CvHistogram* model = 0;
|
|
|
|
|
|
|
|
int x, y;
|
|
|
|
Size size = dst.size();
|
|
|
|
|
|
|
|
cvCopyHist( hist, &model );
|
|
|
|
cvNormalizeHist( hist, factor );
|
|
|
|
|
|
|
|
vector<Mat> img(images.size());
|
|
|
|
for( y = 0; y < size.height; y++ )
|
|
|
|
{
|
|
|
|
for( x = 0; x < size.width; x++ )
|
|
|
|
{
|
|
|
|
double result;
|
|
|
|
|
|
|
|
Rect roi(Point(x, y), patch_size);
|
|
|
|
for(size_t i = 0; i < img.size(); i++)
|
|
|
|
img[i] = images[i](roi);
|
|
|
|
|
|
|
|
cvTsCalcHist( img, model, Mat(), channels );
|
|
|
|
cvNormalizeHist( model, factor );
|
|
|
|
result = cvCompareHist( model, hist, method );
|
|
|
|
dst.at<float>(y, x) = (float)result;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
cvReleaseHist( &model );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_CalcBackProjectPatchTest::validate_test_results( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
double err_level = 5e-3;
|
|
|
|
|
|
|
|
Mat dst = images[CV_MAX_DIM+1];
|
|
|
|
vector<Mat> imagesv(cdims);
|
|
|
|
for(int i = 0; i < cdims; i++)
|
|
|
|
imagesv[i] = images[i];
|
|
|
|
cvTsCalcBackProjectPatch( imagesv, dst, patch_size, hist[0],
|
|
|
|
method, factor, channels );
|
|
|
|
|
|
|
|
Mat a = images[CV_MAX_DIM], b = images[CV_MAX_DIM+1];
|
|
|
|
code = cvtest::cmpEps2( ts, a, b, err_level, true, "BackProjectPatch result" );
|
|
|
|
|
|
|
|
if( code < 0 )
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
////////////// cvCalcBayesianProb //////////////
|
|
|
|
|
|
|
|
class CV_BayesianProbTest : public CV_BaseHistTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
enum { MAX_METHOD = 4 };
|
|
|
|
|
|
|
|
CV_BayesianProbTest();
|
|
|
|
protected:
|
|
|
|
int prepare_test_case( int test_case_idx );
|
|
|
|
void run_func(void);
|
|
|
|
int validate_test_results( int test_case_idx );
|
|
|
|
void init_hist( int test_case_idx, int i );
|
|
|
|
void get_hist_params( int test_case_idx );
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CV_BayesianProbTest::CV_BayesianProbTest()
|
|
|
|
{
|
|
|
|
hist_count = CV_MAX_DIM;
|
|
|
|
gen_random_hist = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_BayesianProbTest::get_hist_params( int test_case_idx )
|
|
|
|
{
|
|
|
|
CV_BaseHistTest::get_hist_params( test_case_idx );
|
|
|
|
hist_type = CV_HIST_ARRAY;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_BayesianProbTest::init_hist( int test_case_idx, int hist_i )
|
|
|
|
{
|
|
|
|
if( hist_i < hist_count/2 )
|
|
|
|
CV_BaseHistTest::init_hist( test_case_idx, hist_i );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_BayesianProbTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
RNG& rng = ts->get_rng();
|
|
|
|
|
|
|
|
hist_count = (cvtest::randInt(rng) % (MAX_HIST/2-1) + 2)*2;
|
|
|
|
hist_count = MIN( hist_count, MAX_HIST );
|
|
|
|
int code = CV_BaseHistTest::prepare_test_case( test_case_idx );
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CV_BayesianProbTest::run_func(void)
|
|
|
|
{
|
|
|
|
cvCalcBayesianProb( &hist[0], hist_count/2, &hist[hist_count/2] );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CV_BayesianProbTest::validate_test_results( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
int i, j, n = hist_count/2;
|
|
|
|
double s[CV_MAX_DIM];
|
|
|
|
const double err_level = 1e-5;
|
|
|
|
|
|
|
|
for( i = 0; i < total_size; i++ )
|
|
|
|
{
|
|
|
|
double sum = 0;
|
|
|
|
for( j = 0; j < n; j++ )
|
|
|
|
{
|
|
|
|
double v = hist[j]->mat.data.fl[i];
|
|
|
|
sum += v;
|
|
|
|
s[j] = v;
|
|
|
|
}
|
|
|
|
sum = sum > DBL_EPSILON ? 1./sum : 0;
|
|
|
|
|
|
|
|
for( j = 0; j < n; j++ )
|
|
|
|
{
|
|
|
|
double v0 = s[j]*sum;
|
|
|
|
double v = hist[j+n]->mat.data.fl[i];
|
|
|
|
|
|
|
|
if( cvIsNaN(v) || cvIsInf(v) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG,
|
|
|
|
"The element #%d in the destination histogram #%d is invalid (=%g)\n",
|
|
|
|
i, j, v );
|
|
|
|
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else if( fabs(v0 - v) > err_level*fabs(v0) )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG,
|
|
|
|
"The element #%d in the destination histogram #%d is inaccurate (=%g, should be =%g)\n",
|
|
|
|
i, j, v, v0 );
|
|
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if( j < n )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( code < 0 )
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
TEST(Imgproc_Hist_Calc, accuracy) { CV_CalcHistTest test; test.safe_run(); }
|
|
|
|
TEST(Imgproc_Hist_Query, accuracy) { CV_QueryHistTest test; test.safe_run(); }
|
|
|
|
|
|
|
|
TEST(Imgproc_Hist_Compare, accuracy) { CV_CompareHistTest test; test.safe_run(); }
|
|
|
|
TEST(Imgproc_Hist_Threshold, accuracy) { CV_ThreshHistTest test; test.safe_run(); }
|
|
|
|
TEST(Imgproc_Hist_Normalize, accuracy) { CV_NormHistTest test; test.safe_run(); }
|
|
|
|
TEST(Imgproc_Hist_MinMaxVal, accuracy) { CV_MinMaxHistTest test; test.safe_run(); }
|
|
|
|
|
|
|
|
TEST(Imgproc_Hist_CalcBackProject, accuracy) { CV_CalcBackProjectTest test; test.safe_run(); }
|
|
|
|
TEST(Imgproc_Hist_CalcBackProjectPatch, accuracy) { CV_CalcBackProjectPatchTest test; test.safe_run(); }
|
|
|
|
TEST(Imgproc_Hist_BayesianProb, accuracy) { CV_BayesianProbTest test; test.safe_run(); }
|
|
|
|
|
|
|
|
TEST(Imgproc_Hist_Calc, calcHist_regression_11544)
|
|
|
|
{
|
|
|
|
cv::Mat1w m = cv::Mat1w::zeros(10, 10);
|
|
|
|
int n_images = 1;
|
|
|
|
int channels[] = { 0 };
|
|
|
|
cv::Mat mask;
|
|
|
|
cv::MatND hist1, hist2;
|
|
|
|
cv::MatND hist1_opt, hist2_opt;
|
|
|
|
int dims = 1;
|
|
|
|
int hist_size[] = { 1000 };
|
|
|
|
float range1[] = { 0, 900 };
|
|
|
|
float range2[] = { 0, 1000 };
|
|
|
|
const float* ranges1[] = { range1 };
|
|
|
|
const float* ranges2[] = { range2 };
|
|
|
|
|
|
|
|
setUseOptimized(false);
|
|
|
|
cv::calcHist(&m, n_images, channels, mask, hist1, dims, hist_size, ranges1);
|
|
|
|
cv::calcHist(&m, n_images, channels, mask, hist2, dims, hist_size, ranges2);
|
|
|
|
|
|
|
|
setUseOptimized(true);
|
|
|
|
cv::calcHist(&m, n_images, channels, mask, hist1_opt, dims, hist_size, ranges1);
|
|
|
|
cv::calcHist(&m, n_images, channels, mask, hist2_opt, dims, hist_size, ranges2);
|
|
|
|
|
|
|
|
for(int i = 0; i < 1000; i++)
|
|
|
|
{
|
|
|
|
EXPECT_EQ(hist1.at<float>(i, 0), hist1_opt.at<float>(i, 0)) << i;
|
|
|
|
EXPECT_EQ(hist2.at<float>(i, 0), hist2_opt.at<float>(i, 0)) << i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}} // namespace
|
|
|
|
/* End Of File */
|